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Cenozoic crustal shortening and plateau uplift within the Hoh Xil Basin, north-central 
Tibetan Plateau: Implications for causal mechanisms of plateau evolution

Figure 2. Inset: Terrane map of the Tibetan plateau. Regions of pre-collisional 
shortening are delineated in stippled and hatched overlay. The Hoh Xil Basin shown as 
white overlay. The Fenghuoshan Fold and Thrust Belt (FFTB) is located within the red 
box. Geologic map of FFTB based on original and published mapping18-19, of the central 
Hoh Xil Basin. Unit descriptions are along the bottom. Sample localities are overlain on 
the map. Structural cross section is indicated from A - A’.
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Crustal shortening across northern Tibet

Crustal shortening initiated nearly synchronously across the 
northern plateau at the ~50 Ma onset of Indo-Asian collision.

Surface uplift

Uplift due to Eocene-Oligocene crustal shortening in the Hoh 
Xil Basin cannot reproduce high elevation and thick crust.

Paleoelevation7 and palynological31-32 data suggest high 
elevation was attained after the Oligocene, suggesting that 
additional uplift and crustal thickening occurred in the absence 
of upper crustal shortening.
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Figure 1. Comparison of schematic cross sections of the pre-collisional Tibetan Plateau (top) and 
the modern Andes. The cross section for the Tibetan Plateau was constructed based on cross 
sections of the Gangdese Fold and Thrust Belt6, the Nima Basin5, the Qiangtang Anticlinorium4, 
the Tanggula Shan14, and Hoh Xil Basin15. The yellow shaded region above the deformed Lhasa 
Terrane represents the relatively undeformed Linzinzong volcanic cover. The mantle lithosphere 
shown beneath the Songpan-Ganzi and Qiangtang Terranes is based on modern geophysical 
data16 and is speculative. The Andean cross section is modified from (17) and is taken as an 
east-west transect across central Bolivia.
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The central Tibetan Plateau was deformed, and possibly 
uplifted to near-modern elevations, prior to the Indo-Asian 
collision, analogous to the modern Altiplano-Puna Plateau in 
South America1-13 (Fig. 1). Today, the Tibetan Plateau is roughly 
double the width of the pre-collisional deformation belt and the 
majority of post-collisional plateau expansion took place in the 
north.

Outstanding Questions:

How and when was crustal shortening accommodated in 
northern Tibet?

How does the timing and magnitude of shortening compare 
with paleoelevation and modern values of crustal thickness? 

What causal mechanisms for plateau uplift are consistent with 
our data?
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Figure 6. Cross section for the FFTB. Top panel shows undeformed cross section, reconstructed from isopach15 and stratigraphic data18-19. Bottom panel 
shows deformed range, constrained by structural measurements and field observations.

Methods
We constructed a geologic cross section across the FFTB (Figs. 2 and 6), based on field 
observations, isopach data15, and new and existing geologic mapping18-19. We line and area 
balanced the cross section to derive the amount of shortening and estimated uncertainties based 
on hanging wall cut-offs, depth to décollement, and stratigraphic thicknesses22-23.

Results
We derive a shortening estimate of 40.26 ± 10.03 km (28.0 ± 7.2%).
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Figure 5. (A) Gouge aliquot ages plotted against illite concentrations 
for the Zhong Fenghuoshan Thrust fault (ZFT) and linear regression 
results. (B) Gouge aliquot age and illite concentrations for the Nan 
Fenghuoshan Thrust (NFT) and linear regression results.

FAULT GOUGE DATING

Methods
We dated two thrust faults from the 
FFTB (Fig. 2). Fault gouge ages 
obtained by polytype analysis and 
40Ar/39Ar dating of clay-sized gouge 
aliquots and linear best fit using 
Bayesian regression techniques.

Results
Both fault gouge samples provide a 
faulting age of 44 - 45 Ma (Fig. 5).

Interpretation
We interpret this data to suggest 
that the south-directed thrust faults 
within the FFTB were active in 
mid-Eocene time.

40Ar/39Ar GEOCHRONOLOGY

Sampling
We collected variably deformed  
volcanic rocks from the FFTB for 
geochronology (Fig. 2).

Results
The deformed rhyo-dacite is 
33.46 ± 0.24 Ma (Fig. 3).

The lower flat-lying basalt is 
27.33 ± 0.1 Ma (Fig. 3).

Interpretation
40Ar/39Ar ages indicate that 
north-south shortening of the FFTB 
ceased between ~34 and 27 Ma.

Figure 3. Outcrop photos and 40Ar/39Ar spectra for biotites separated 
from sampled volcanic units. Top photo and Ar spectra are for the de-
formed rhyo-dacite. Bottom Ar age spectra correlate to the lower hori-
zontally oriented basalt flow. TGA: Total gas age. WMPA: weighted 
mean plateau age. MSWD: mean square weighted deviation.
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Figure 4. HeFTy model results for sandstone samples from the 
FFTB. Geologic constraints are based on deposition in the Creta-
ceous, subsequent burial in the Eocene, and (only for the southern 
sample) basalt eruption at the surface between 25-30 Ma.

THERMOCHRONOLOGY

Modeling
We modeled apatite (U-Th)/He 
ages and apatite fission-track 
length distributions from samples 
collected from the FFTB  (Fig. 2) 
using HeFTy20. Constraints were 
compiled from the literature21.

Results
The onset of rapid cooling occurred 
by 45 - 48 Ma, followed by slow 
cooling in the Oligocene (Fig. 4).

Interpretation
Shortening and exhumation of the 
FFTB initiated in the mid-Eocene, 
soon after the onset of Indo-Asian 
collision, and continued into the 
Oligocene.
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Methods
We calculate the isostatic uplift for 
~28% pure shear to test whether 
shortening can account for modern 
crustal (65-70 km)24 and lithospheric 
(130-150 km)25 thicknesses and  for 
Miocene paleoelevations (3.4-4.2 
km)7.

Results
Measured upper crustal shortening 
cannot account for Miocene elevations 
or modern crustal thickness (Fig. 7b).

Interpretation
Other mechanisms of crustal 
thickening and surface uplift are 
necessary to build the northern 
plateau, such as lower crustal flow26-27, 
uniform lithospheric thickening28-29, and 
possibly mantle root loss30 (Fig. 7c-f).

Isostatic calculations for proposed 
mechanisms for additional thickening 
and uplift are all compatible with 
reasonable initial crustal and 
lithospheric thicknesses (Fig. 7c-f).
Figure 7. (a) Schematic diagrams of crustal thickening and/or uplift mechanisms explored in calculations of isostatic compensation. In plots (b-f), step 
numbers correlate to schematic figure (a) and results of surface uplift are colored by elevation. Initial crustal and lithospheric thicknesses are outlined 
in red, post-28% pure shear crustal and lithospheric thicknesses are outlined in purple, and final conditions following attainment of modern elevation 
and crustal and lithospheric thickness are outlined in cyan. Results for (b) uniform pure shear of 28.0 ± 7.2% assuming that the Hoh Xil Basin was origi-
nally below 1 km elevation, similar to modern retroarc foreland basins (c) uniform thickening to modern crustal and lithospheric thicknesses, (d) thicken-
ing of the crust only to modern crustal thicknesses, (e) uniform thickening and removal of the mantle lithosphere to modern lithospheric thickness (130 
- 150 km)25, and (f) over-thickening of the lithosphere via crustal thickening only and removal of the mantle lithosphere to modern lithospheric thickness.
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Figure 8. Crustal shortening at the onset of colli-
sion shown by blue stars. ~50 Ma deformation in 
northern Tibet is documented by (33, 34, 35, 36, 
37). Miocene flat-lying lacustrine carbonate de-
posits are shown in orange38.
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