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ABSTRACT
Amphibolite facies metamorphic rock of the West Grove Metamorphic Suite in the central Appalachian Piedmont of SE Pennsylvania and 

northern Delaware occurs in a stack of basement gneiss-cored nappes or thrust sheets bounded to the north by the Pleasant Grove-Huntingdon 
Valley shear zone (PGHV) and to the southeast by the Rosemont shear zone (RMZ); both are steeply dipping transcurrent shear zones. The granu-
lite facies Wilmington Complex (WC) and amphibolite facies Wissahickon Fm. (WF) occupy the block east of the RMZ. From NW to SE and struc-
turally lowest to highest, the nappes include the West Chester massif, the Woodville nappe, the Avondale massif and the Mill Creek Anticline. 
U-Th-total Pb monazite ages indicate that maximum temperatures in the Mill Creek were attained in the late Silurian prior to the highest tem-
peratures in the structurally lower Avondale nappe. In turn, peak metamorphism in the structurally lowest unit, the Doe Run schist in the West 
Chester nappe, is even younger – maximum temperatures were not reached until 410 Ma (early Devonian). We interpret this sequence to repre-
sent successive stacking of thrust sheets from southeast to northwest with the warmer overriding sheets contributing to the thermal budget of 
lower sheets. This deformation and metamorphism is interpreted to be the result of the Silurian collision of Ganderia, in a sinistral transpressive 
tectonic regime (Hibbard et al., 2007; 2010). The geometry of thrust sheets relative to the steeply dipping PGHV shear zone is consistent with the 
sinistral restraining bend at the New York promontory in the Hibbard model. 

The most recent ductile deformation in the PGHV is thought to reflect dextral motion; such motion could have transported the assembled 
nappes from a more northerly location. The middle Devonian age of monazite in the WF suggests that Barrovian metamorphism there is the 
result of crustal thickening during the Acadian orogeny, the accretion of Avalon in the northern Appalachians. Given the evidence for late Devo-
nian and younger dextral transcurrent motion regionally on the PGHV and RMZ, and throughout the Appalachians, it is likely that the crustal 
block east of the RMZ which contains the Wissahickon Fm. and Wilmington Complex was originally located some distance to the north.
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Results of U-Th-total Pb monazite geochronology.  This study focuses 
on rocks of the West Grove Metamorphic Suite, the Doe Run Schist and 
Mt. Cuba Gneiss, which occur in a series of basement cored nappes 
bounded by sub-vertical shear zones. The structurally highest MCG in 
the Mill Creek nappe records the Silurian metamorphism, 424.9 ±0.4 Ma 
(Aleinikoff et al., 2006) while the structurally lowest West Chester nappe 
did not attain maximum temperatures until the early Devonian, at 409 
Ma. East of the Rosemont shear zone (RZ), metamorphism in the Wissa-
hickon Formation is Middle Devonian. The results shown above are 
weighted averages of compositional/age domains within a single thin 
section with 2 precision. Results with an asterisk(*) are the weighed av-
erage of individual spot analyses, performed at RPI  (Bosbyshell et al., 
2007). All other results were obtained at the UMass Ultrachron lab (Bos-
byshell et al., in preparation). The Moacyr monazite consistency standard 
was analyzed at both labs. Scale bar in image at right is 5 m. 
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Siluro-Devonian sinistral tanspression
The geometry of the thrust sheets in relation to the steeply dipping shear zones is consistent a sinistral transpressive regime. The 
timing of metamorphism, with peak temperatures attained first in the structurally highest block is interpreted to represent 
successive stacking of thrust sheets from southeast to northwest with the warmer overriding sheets contributing to the thermal 
budget of lower sheets. The sinistral shear zone below is in the Mt. Cuba gneiss near the margin of the Rosemont shear zone.   

P-T-D-t path - Doe Run Schist. Garnet in 
the Doe Run Schist is characterized by  
low-Ca rims, which modeling and textures 
suggest is the result of resumed garnet 
growth upon high-temperature staurolite 
breakdown. This late garnet growth 
cross-cuts the dominant foliation in some 
samples, but is wrapped by the foliation in 
others, indicating that maximum tempera-
ture is syn- to post kinematic. Monazite in-
clusions within the low-Ca garnet rims give 
an early Devonian age, providing a maxi-
mum age for peak temperatures and the 
cessation of deformation.
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NW SE

Younger, lower temperature, 
right-lateral transcurrent 
motion is well documented in 
the PGHV and RZ shear zones 
(Valentino et al., 1994, 1995). We 
suggest that a change from 
sinistral to dextral kinematics 
may have resulted in a 
transtensional regime. 
Rosemont shear zone fabrics 
pictured at left indicate 
right-lateral, east side down 
sense of motion. 

Transtension could have facilitated isothermal decompression, producing the 
plagioclase- Al2SiO5 inter growths on quartz inclusions and Ca-depletion halos in the 
surrounding garnet. Whitney (1991) proposed that similar textures were the result of 
reactions involving fluid, introduced along fractured in garnet, with aqueous Ca+2 as a 
product. A monazite inclusion along a fracture in the garnet above yielded an age of 
399 ±14 Ma (Pyle et al., 2006), which may constrain the timing of the onset of uplift.
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