Using High-Resolution Basin Analysis to Unravel Complex Fault Kinematics, Under-

Introduction

The Lake Mead Area is a key area to study extensional processes (e.g., Anderson
(1971; Wernicke and Axen, 1988) as well as the evolution of the Colorado River and
Grand Canyon (e.g., Karlstrom et al., 2014). Much work in this area focused on struc-
tural analysis and thermochronolgy (e.g., Reiners et al., 2000; Dubendorfer, 1988) but
Beard (1996) recognized the need to study the complex stratigraphy as well. The
Horse Spring Formation (HSF) records hanging wall deposition prior to and during
the main phase of extension from ~17 to ~8 Ma. Ranging from >25 to ~12 Ma, the
HSF consists of a variable mix of carbonates, siliciclastics, tuffs, and evaporites that
formed in small basins of varying size. The deposits have been subsequently beauti-
fully exposed by down-cutting of Colorado River tributaries, possibly due to estab-
lishment of the Colorado River in the area at 5-6 Ma. We set out to define and charac-
terize these basins in detail to reconstruct the complex faulting and tectonic evolu-
tion of the area and to address the following questions:

How does extension in a wide rift proceed?
How does the hanging wall break-up?
Progression spatially, from east to west?
Different styles of faulting through time?
Continuous through time or punctuated?
How do climate change and evolving topography affect sedimentation in
a major extensional orogen?

Because the HSF stratigraphy is so variable in terms of lateral and vertical facies, it
can be hard to map across faults, but this complexity is actually advantageous: sepa-
rate basins and subbasins have their own unique characteristics that can be used to
unravel deformation. Numerous tuffs allowed us to create a detailed chronostratigra-
phy: we probed 216 tuff samples for geochemical fingerprinting and dated 22 sam-
ples using *°Ar/*’Ar geochronology. We measured over 60 detailed sections and, in the
highly variable areas, walked out beds to document lateral changes. We mapped at
1:5,000 and 1:10,000 scales and conducted paleocurrent and provenance analyses. Fi-
nally, we ran 715 lacustrine carbonate samples for stable O and C isotope analyses.

With this huge integrated dataset, we defined a number of sedimentary
basins and determined many of the faults that created them, as well as the
timing of faulting. We identified growth faults at two different times within the
HSF and began to distinguish tectonic and climatic signals in the stratigraphic
record. We are creating a step-by-step tectonic reconstruction of the entire area
from 18 Ma to present. Our structural analyses have benefitted greatly from the
multidisciplinary, detailed approach. It has also been a very successful tool for
engaging students (undergraduates and M.S.) in research at all scales.
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Selected Examples of our Work to Date

Because the Horse Spring Formation was deposited in a series of basins that were dismembered during several episodes of faulting, outcrops are found throughout the Lake
Mead region. During several field seasons and over 20 undergraduate and M.S. student projects, we carefully documented the facies and faulting in each region in order to
reconstruct the basins and timing of each stage of deformation. Below are four examples of this work.
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Example 1: Using detailed measured sections, map-
ping, tephrochronology and geochronology to find
and determine the timing of growth faulting and sedi-
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Example 2: Climate and tectonics

We are trying to unravel the interplay of climatic and tectonic factors on sedimen-
tation by comparing the laterally and vertically highly-variable HSF facies and our
stable isotope data to global climate data sets. Isotopic variation within thick, uni-

form lacustrine de-
posits are likely the
result of Milankov-
itch-scale solar inso-
lation cycles. Other
stratigraphic chang-

es may be linked to a

major middle Mio-
cene global cooling
event, including the
mid-latitude aridifi-
cation of continents.
At the same time,
tectonics and exten-
sional faulting con-
trol the location and
geometry of basins.
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The middle Miocene encompasses the Mio-
cene Climatic Optimum (MCO) and the
Middle Miocene Climate Transition (MMCT),
a major rapid global cooling event. Cycles
within this cooling may have contributed to
the stratigraphic cycles we see.

Example 4: simplified reconstructions, based on detailed ArcGIS reconstructions
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We are organizing all of our student and faculty mapping into one ArcMap project so that we can create
detailed palinspastic reconstructions, moving tens of individual polygons at each time step from 18 Ma to
present. Our initial work suggests that deformation is continuous from 17 to 12 Ma but comes in pulses,
with changing rates through time. We see two cycles of the formation of a long-lived lake created by a
single major fault followed by the breakup into subbasins on many faults.




