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Orogenic response to climatic perturbations: Landscapes as ‘filters’

Overarching goals of this exercise:
· Introduce numerical solution techniques
· Quantify how an orogen might respond to climate change

Model review

We will be working with our previously derived fixed-width “ice-cube” model with elevation-dependent erosion rate (see figure below).
[image: lab_icecube_orogen]
Recall that the differential equation governing the growth of this orogen is:


								(1)

where hoC is the accretionary flux of crustal material. We assumed a linear relationship between erosion rate E and orogen elevation , i.e. E = , where the parameter  is a proxy for precipitation rate (‘climate’). We can introduce to our model the concept of climate variation by allowing the erosion parameter  to vary sinusoidally about a mean (o):


								(2)

where T is the period of climate change and  is the dimensionless amplitude of climate change, e.g. if  = 0.1 and T = 1 Ma, then the ‘climate’ (annual precipitation) varies by 10% about its mean with a period of one million years.

Incorporating (2), we can write (1) in a relatively compact form:


						(3)




where  is the timescale for orogen approach to steady state and  is the steady-state orogen elevation. Note that while steady state requires steady climate, the parameters that describe a steady state (, ) are meaningful in a non-steady (transient) problem.

We will come back later and solve (3) numerically to investigate how mountain belts might respond to periodic changes in climate. Before doing so, however, we should familiarize ourselves with a basic numerical solution scheme.

Part 1: Approach to steady state: Numerical solution


Let us return to the problem we investigated in lecture: the approach of an orogen to steady state under conditions of steady climate and steady accretionary flux. To get a steady climate, we simply force , in which case (3) collapses to something familiar:


									(4)

Equation (4) is a first-order differential equation, often termed a ‘rate equation,’ for which time (t) is the independent variable and elevation () is the dependent variable. It equates the rate of change in orogen elevation at any instant in time to the orogen elevation at that instant in time. We can approximate the rate of change in elevation over a time interval t as:


									(5)

where old is the ‘old’ elevation at the beginning of the time step and  is the ‘new’ or updated elevation at the ‘end’ of the timestep. This approach should be intuitive; it works well as long as t is sufficiently ‘small’ relative to the timescale of the problem (and what would that timescale be?). We can thus write (4) as:


								(6)

Equation (6) relates the ‘new’ elevation () to the old elevation (old) and the timestep (t). We can solve (6) to obtain a ‘motif’:


								(7)

With this motif, we can ‘step’ forward through time, constantly updating the orogen elevation.

More generally, we can write any first-order rate equation in the form:


										(8a)

where F (the rate) could be a function of both the independent and dependent variables. In this general case, the numerical solution (the ‘motif’) has the form:


								(8b)

Note that we evaluate the function F at the ‘old’ time (told), using the ‘old’ elevation (old). Equation (8b) is known as Euler’s method of numerical integration. You will use it to solve Equation (3). In words, the new elevation is simply equal to the old elevation plus the change in elevation across the time step, where the change in elevation is the product of the instantaneous rate and the time interval. Make sense? Yep?

Exercise:

Using Excel, implement Euler’s method of numerical integration to evolve the ‘ice-cube’ orogen from the point of initial continent-continent collision (t = 0) to a (nearly) steady-state configuration.

Parameters:

Use the following parameters: ho = 40 km; C = 2 cm·a-1; m = 3300 kg·m-3; c = 2800 kg·m3; W = 271.5 km;  = o = 5.893·10-7 a-1.

Watch your units! Be consistent. Use the ‘mka’ system, i.e. meters, kilograms, and years (year = annum).

Note: For simplicity, set o = 0, i.e. assume the top of the incoming (non-deformed) plate is at sea level. This simplifies the calculations.

Approach:

The details of the spreadsheet are up to you; please consider the following:

What are you trying to find? You are trying to obtain the elevation as a function of time. Your numerical solution thus will involve approximating the elevation () at various equally spaced times, i.e. t = 0, t, 2t, 3t, 4t, …, tmax.

Visualize your spreadsheet. Excel is ideally suited to dealing with columns of data (numbers). How might you arrange your numerical solution in columnar form? You probably want to reserve some space for ‘storing’ parameter values, e.g. ho, C, etc.

Maintain generality in your spreadsheet. The idea of a numerical solution is that you can explore system behavior quickly (and thus gain physical insight) by changing one parameter, e.g. C, and observing the effects of this change. If you ‘hardwire’ the C value in every cell within your spreadsheet, then, in principle, you need to change every formula (hundreds to thousands) every time you vary C. This is inefficient, to say the least. However, if you store the value of C in a cell ‘off to the side’ and refer to this stored cell in all your formulas, then a change in C requires changing only one cell—the cell off to the side—and Excel will update everything else automatically. Handy little tool, that Excel, provided you use it cleverly. The same idea holds for numerical parameters, e.g. t; set them aside in dedicated cells.

How will know if your spreadsheet (numerical) solution is ‘working’? We will go through an example in class.  Later, we will walk through the analytical solution (they should match!).

How many time steps will you need to capture the approach to steady state? In other words, about how long is required for the system to reach steady state? What might you chose for tmax?

How large or small should you make your time step (t)? Explore this. Play around with t and see what you can get away with before Euler’s method yields unacceptable results (large errors).

Think about the scales of the problem and how you might use these to display model results. For example, changing the climate parameter  will change both the time required to reach steady state and the steady-state elevation, but will it change the basic ‘structure’ (trajectory) of how the orogen approaches equilibrium? Maybe there is a way to normalize time and space such that system behavior for a large range of parameter values collapses into a ‘nice little box.’ With thoughtful normalization, you are not comparing plots of (t) that have wide ranges in scale.

Think ahead: leave room to grow. We would like to expand upon this simple steady-state case and investigate changing climate.  The spreadsheet you create this week is an excellent starting point for that. Think about how you will have to modify things to incorporate time-varying climate. What additional parameters are required? Can you maintain the same overall structure to your spreadsheet, etc.?

Final product:

You should produce a plot (or plots) of elevation () as a function of time (t). The goal here is to master Euler’s method of numerical integration on a relatively simple problem.  

When you are done, post a copy of your spreadsheet to our website (find the assignment “Numerical Model 1”).

As an extension, to those who choose to go further: 

See if you can use your spreadsheet to help you gain additional insight into the Taiwan growth to steady-state problem we are dealing with in lab.  Can you effectively model Taiwan?  How long does it take to reach steady-state?  How does that compare with your estimation based on the DEM data?  Are the steady-state elevations comparable? 
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