Instructor notes on “Topographic steady-state in Taiwan” lab:
Karen Gran, University of Minnesota Duluth

Students are given access to the GTOPO30 dataset for Taiwan and the swath shapefile.  If you download the GTOPO30 data, you should reproject it using something like an Albers projection, so that the horizontal units are in meters instead of lat/long.  There are 34 swaths, each one 10km wide, oriented perpendicular to the range axis.  I generally assign 3-4 swaths per student (10-15 students in the class), giving lighter loads to the GIS novices and heavier loads to the GIS gurus.  I have GIS gurus self-identify, so other students know who to go to with questions. 

A few pointers on the data collection portion (week 1):
1. Make sure the students start their lines (along which data are extracted) on the same side of the range.  I usually tell them to go from right to left.  Then all of the range fronts are aligned along the subduction zone side of the island (along the longitudinal valley).  
2. See above note about getting units into meters first.
3. Try and get students to standardize their swath plots (see example at the end of the handout for week 1).  I collate all of their plots, line them up in order, and return them to the class, along with a table of data summaries (area under range, max elevation, mean elevation, etc.).  If the plots are already all the same, it makes my job a lot easier.
4. I run the data collection during a 2-hour lab session.  Some, but not all, students can finish in 2 hours.  I have the Excel files with plots and data summaries due 1-2 days before their next lab, so I have time to collate all of the data before the synthesis lab.

A few pointers on the data synthesis portion (week 2):
1. The students get a chance to go from seeing just their own swaths to seeing the entire range.  Encourage them to discuss their observations with each other.  Encourage them to produce a series of X-Y scatter plots with “distance along range” as one of the axes.  You can be very prescriptive or very hands-off here.  I tend to be very hands-off and let them work it out.  
2. Students can also spend this lab session calculating accretionary flux and time to steady-state, etc.  We have gone over accretionary flux in class and developed a simple mountain-building model with isostatic compensation and elevation-dependent erosion.  

Background on Taiwan and topographic steady-state is covered nicely in the Stolar et al (2007) (Stolar, D.B., Willet, S., and Montgomery, D.R., 2007, Characterization of topographic steady-state in Taiwan. Earth & Planetary Science Letters, v. 261: 3-4, p. 421-431. DOI: 10.1016/j.epsl.2007.07.045.).  I do not give the article to the students until after they hand in their papers, because I want them to think about their data on their own first.  I do post the article to our class website after students hand in their assignments, in case anyone is curious.  

Topics we cover in class prior to this lab include a discussion of Molnar and England’s Chicken & Egg paper (Molnar, P., and England, P., 1990, Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg?, Nature, v. 346, pp. 29-34.), isostasy, and we develop a simple model of tectonic accretion with isostatic response and elevation-driven erosion.  Class notes are attached here for reference.  They were originally written by John Swenson at UMD. 

Instructor Notes: Isostatic rebound in response to erosion:

The analysis below quantifies the change in surface elevation for a given amount of crustal thinning.

[image: erosion_rebound]

The figure above should resemble what we sketched in class. The block on the far left represents the crust before erosion; the middle block, which is not compensated isostatically, simply illustrates how erosion has thinned the crust by an amount h; the block on the right shows the compensated system, i.e. it shows the amount of rebound due to isostasy following erosional thinning. Our goal is to determine the change in mean surface elevation () for a specified amount of erosion (h).

How to proceed? The left and right blocks are isostatically compensated. Hence, we simply equate the hydro(litho)static pressure at the base of both columns:


							(1)

where c and m are the densities of the crust and mantle, respectively, and h is the thickness of the crust prior to erosional thinning (left panel). A wee bit of algebra gives:


									(2)

For garden-variety crust (c ~ 2800 kg/m3) and mantle (m ~ 3300 kg/m3), the density anomaly  ~ 500 kg/m3, and the ‘scaling factor’ on the RHS of Equation (2) is in the range of 1/6 to 1/7.

Physically, for each unit of crustal thinning (erosion), the decrease in mean surface elevation is about 1/6 that amount, the point being that (under these model assumptions) the surface expression of erosion is relatively small. The underlying reason is isostasy and the relatively small density contrast between crust and mantle. 

Note that the above result addresses either crustal thinning or thickening.
[bookmark: _GoBack]Instructor Notes: Fixed-width orogen models

The figure below illustrates (crudely) continent-continent collision, sensu Himalayas, in which two continental plates collide and result in thickening of the crust. Each plate has an unperturbed thickness of ho; the convergence rate (speed) is 2C with respect to an observer fixed on one plate. We will investigate the simplified case of a symmetric orogen of fixed width 2W. All material entering the orogen (via plate convergence) is distributed within the ‘rectangular’ area of half width W and thickness h. We do not concern ourselves with the details of rock ‘movement’ (flow) within the orogen.

[image: simple_orogen]
Case 1: No erosion

In the limiting case of no erosion, all material ‘entering’ the orogen laterally acts to thicken the orogen, i.e. no material is lost from the orogen via erosion. As such, conservation of rock volume takes the form:


										(1)

The quantity hoC is known as the ‘accretionary flux’; it represents the depth-integrated flux of rock entering the orogen. Assuming isostatic compensation of the orogen (see previous handout), the rate of crustal thickening (dh/dt) varies linearly with the rate of surface uplift (d/dt) according to:


									(2)

Combining (1) and (2) gives:


										(3)

where  = m – c. Physically, Equation (3) partitions the lateral accretionary flux into vertical motion across the orogen of width W and, importantly, drives most of the material into the crustal ‘root’ beneath the mountain range. Not to beat a dead horse, but the rate of change in surface elevation is about five times less than the rate of growth of the crustal root.

Note that in this simplified case, the mean height of the mountain range (orogen) grows steadily and, apparently, has no feedback mechanism to limit its height.

Note further that in this case rock uplift is equal to surface uplift.

Case 2: Erosion balances crustal thickening

At the other end of the spectrum, so to speak, is the limiting case of erosion balancing the rate of crustal thickening, i.e. the erosion rate adjusts itself to balance exactly (in a suitably time-averaged sense) the rate of crustal thickening such that dh/dt = E = hoC/W, where E is the mean erosion rate across the orogen.

Note that in this case the mean surface elevation () does not change in time and, by extension, the rock uplift rate balances the exhumation rate. In addition, we have said nothing about the surface elevation that corresponds to this steady state; we will address that in the next case.

Case 3: Elevation-dependent erosion

More generally during collision and crustal thickening, erosion attempts to counteract increases in surface elevation. In this case, conservation of rock volume has the form:


									(4)

In words, Equation (4) tells us that the net rate of change in crustal thickness (LHS) is controlled by the difference in the rates of adding material to the orogen (accretionary flux) and removing material via erosion. Note that Equation (4) has a steady state solution, whereby EW = hoC (Case 2 above).

In our model, the only ‘dependent’ variable is the mean surface elevation (or, alternatively, the mean crustal thickness of the orogen). If we can somehow relate the erosion rate (E) to the surface elevation (), then Equation (4) will take the form of a (non-trivial) first-order differential equation that, upon solution, will perhaps provide us with some insight into how an orogen evolves to steady state.

We might suspect the erosion rate to increase with elevation above sea level, i.e. we might posit E = , where  is some ‘constant’ that depends on various system parameters (like what?). If we combine this posited relationship with Equation (2), then Equation (4) takes the form:


								(5)

Now we have an interesting differential equation governing the evolution of our orogen. A solution to this equation is:


						(6)

Think about what this means in terms of behavior of the system. 
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