ESCI 101 ~ Principles of Earth Science I

Bathymetry map of the SE U.S., colors represent different elevations.

How bathymetric maps are made.

- o Continental Shelves a gently sloping submerged edge of the continent
 - Sand- and mud-covered platform
 - Water depth does not exceed 500 m
 - Fringes the continent

- Continental Slopes region of steep slopes between the continental shelf and the continental rise
 - Covered in mud
 - Cut by deep submarine canyons
- Continental Rise a broad and gently sloping ramp that rises from an abyssal plain to the continental slope
 - Muddy and sandy sediment
 - 100's of kilometers wide

Depiction of the coast off of Los Angeles

- o Abyssal Plain a flat, sediment-covered province of the sea floor
 - Covered in microscopic plankton shells (which eventually could be transformed into oil) and mud, both of which settle out of suspension

Nannoplankton found on the abyssal plain

- 4,000 6,000 m below sea level
- Broken by occasional submerged volcanoes (seamounts)

- o Mid-Ocean Ridge a series of mountains formed by volcanism at a plate rift
 - 2-km high submarine mountain belt

Atlantic Ocean - cut by the Mid-Atlantic Ridge, also depicts 2 passive margins - the East Coast of North America and the West Coast of Africa and Spain

- Plate Margin Types:
 - Passive Continental Margin margins that are not plate boundaries and host few earthquakes
 - Broad continental shelves
 - Shelf formed from stretched continental crust that cools and sinks
 - Covered with sediment washed off the continent

Passive and Active margin (convergent

margin)

- Active Continental Margin a margin that coincides with a plate boundary and hosts many earthquakes
 - Narrow continental shelves
 - Sediment from the continent spreads out over the accretionary prism (material scraped off the downgoing plate)
 - Steep descent to the sea floor trench
 - > 8 km deep

Map and cross depicts an active margin off the western coast of South America

• Ocean Water

- Composition
 - Salinity concentration of salt (Sodium (Na+)) in water
 - 3.5 % dissolved salt ions (freshwater 0.02%)
 - Increases water's density
 - Reason why you float higher in salt water than in freshwater
 - Not constant
 - Can be diluted by the input of freshwater from streams or melting glaciers
 - Can be concentrated by evaporation of water which leaves behind salt
 - Changes with depth

Salinity distribution graph (vertical salinity changes) and map (horizontal changes) of the oceanic water

- Other components
 - Potassium (K+), Calcium (Ca2+), and Magnesium (Mg2+) from chemical weathering of rocks
 - Chloride (Cl-) and Sulfate (SO4-2) from volcanic gases

o Temperature

- Average temperature 17 °C (62.6 °F)
- Ranges from freezing to 35 °C (95 °F)
- Varies with depth
- Warm, less dense water floats on top of cold water
- Water temperature decreases abruptly

Temperature distribution graph (vertical temperature changes) and map (horizontal changes) of the oceanic water

Density

Both salinity and temperature affect density

- Average density 1.025 g/cm3 (freshwater 1 g/cm3)
- Mostly controlled by salinity
- Density varies with depth

Ocean Currents

- o 2 levels of currents:
 - Surface currents affects the upper 100 m's
 - Deep currents affects water at the bottom of the sea

Ocean Currents

- Surface currents:
 - Major surface currents result from the interaction between the sea surface and the wind
 - Air molecules shear across the surface of the water
 - Friction between air and water drags water along
 - Movement of water due to wind shear does not exactly parallel the movement of the wind

- Animation of global surface currents
- Consequence of the Earth's rotation creates the Coriolis effect
 - Causes surface currents in the Northern Hemisphere to veer toward the right and in the Southern Hemisphere to veer toward the left

The Coriolis Effect

- Deep Currents
 - Water also circulates in the vertical direction
 - Downwelling zones where near-surface water sinks
 - Upwelling zones places where deep water rises

- Occurs along coastal regions because wind blows parallel to coastlines
 - Wind drags surface water along and the Coriolis effect causes water to deflect at an angle to the wind
 - Water moves towards the coast too much water --> downwelling
 - Water moves away from the coast too little water --> upwelling

Zones of Upwelling

Animation of upwellingnimation of upwelling

- lacktriangledown Can also be driven by contrasts in water density differences in temperature and salinity
 - thermohaline currents
 - Cold salty water tends to sink
 - Warm, less salty water rises

Thermohaline currents

Thermohaline currents including the warm Gulf Stream

- Variations in density (due to temperature) causes the oceans to be vertically stratified into moving water masses
- Water masses mix very slowly

Various water masses including the Antarctic bottom water and Antarctic circumpolar water

Tides

- $\circ~$ Tides cycles of regular rise and fall of the level of water in oceans
 - 2 cycles daily 2 high tides and 2 low tides
 - Tidal reach the difference in sea level between high and low tides

- Flood tides rising water, nearshore flooded
- Ebb tides decreasing water, nearshore draining seaward

o Tidal Flat - a broad, nearly horizontal surface covered and uncovered by the tides

Tidal Flat

- o Tide-generating force -
 - Gravitational attraction of the Moon (and Sun) causes water to bulge outward on the side nearest the moon
 - On the opposite side, inertia created by Earth's rotation causes ocean water to bulge outward in the opposite direction

- 2 oceanic bulges
 - When a location lies under a bulge, it experiences a high tide when it passes under a depression, it feels a low tide
 - Earth rotates, bulge remains stationary
 - Any given coastline will move westward through both bulges each day
 - Animation of gravitational attraction of the moon and how it produces tides

Reading tidal graphs - curve shows sea level height for one day and depicts the timing of high and low

- Number of factors influence the timing and reach of tides:
 - Earth's tilt 2 tides do not reach the same level (one is larger)
 - Moon's orbit gravitational attraction between the Earth and Moon changes seasonally
 - Sun's gravity -
 - Sun and Moon are at right angles (quarter moon) extra low tides (Neap Tide) -
 - Sun's attraction counteracts the Moon's
 - Sun is on the same side as the Moon (new moon or full moon) extra high tides
 (Spring Tide) -
 - Sun's attraction adds to the Moon's

Special tides

- Basin shape controls the tidal range:
 - Open ocean 0.5 m tidal reach
 - Restricted basins (narrow inlets) can be greater than 20 m (Bay of Fundy)

Go on to more notes on Oceans