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PREFACE TO INSTRUCTOR

This set of exercises illustrates A. plane and space groups and B. crystal chemistry and
“defects” in crystals. The problems are designed to present the material as puzzles that are visually
attractive and intellectually challenging. Parts A and B can be covered independently of one
another. Part B flows into the following problem set, “From 2D to 3D: II. HRTEM and AFM
images” (Buseck, this volume), which provides examples of real crystals through high-resolution
images from both transmission electron microscopy (HRTEM) and atomic-force microscopy
(AFM). The exercises can be used either as take-home problem sets or as laboratory exercises.

Several exercises use drawings by M.C. Escher and one by [. Schaschl to take the students
to another level of sophistication from that in many texts and to see whether they can draw
mineralogical analogies from these drawings (a strange thought, considering these are just weird,
artistic fantasies of animals and more abstract motifs). We also look at deviations from ideality as
they occur in minerals. These are examples of the wide range of fascinating features that are
encountered in real (as opposed to idealized) minerals.

There is too much material to be covered in a single laboratory session. However, it is
possible to select from among the problems, choosing those that are most relevant to the particular
topic being covered. The two problems of topic A, “Escher drawings as 3-D projections: analogies
to real minerals,” take the most time. They can be skipped if crystal chemistry and mineral defects
are the topics of greatest interest.

Problems 3 to 6, grouped under topic B “Order/disorder relations,” provide examples of
features found in real minerals (superstructures, substitutions and structural “defects,” and
modulated and incommensurate structures). Only some of these complexities are covered in the
typical introductory mineralogy course. Comments I received at the Workshop were encouraging.
Some participants, themselves mineralogy instructors, commented that some of these mineralogical
complexities made sense to them for the first time in the process of doing these problems.

Students should have prior familiarity with basic symmetry elements, unit cells (in two
dimensions, even if not in three), and have been exposed to the concept of plane groups. These
topics are covered in most mineralogy textbooks, and students may wish to consult those texts (a
worthwhile goal in itself) in the course of doing these problems. The insights provided in these
exercises are reinforced by comparison to the exercises in the following problem set ,*“From 2D to
3D: II. HRTEM and AFM images,” in which TEM and AFM images of real minerals are
considered.

Materials: Escher drawings # 42, 55, 70, 78, and “Birds in Space,” plus “Iselberg” by .
Schaschl (Vienna Museum); transparent overlays (plastic overhead sheets do well); colored
markers (I like Staedtler Lumocolors); a reference copy of the International Tables for
Crystallography (ref. given below). I found it effective to use sequential overlays in
demonstrations to explain the steps in figuring out the relationships in problems #1 and 2.
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References: Two books that I found both useful and enjoyable for working with the art of Escher
are (a) MacGillavry, Caroline H., 1965, Symmetry Aspects of M.C. Escher’s Periodic Drawings.
The International Union of Crystallography; and (b) Schattschneider, D., 1990, Visions of
Symmetry: Notebooks, Periodic Drawings, and Related Work of M. C. Escher. W. H. Freeman
and Company. N.Y', 354 pp. The ultimate reference for information regarding space groups is
Hahn, T, ed., 1985, International Tables for Crystallography, Volume A, Space-group
Symmetry, D. Reidel Pub. Co., Boston, for The International Union of Crystallography. A “Brief
Teaching Edition” of vol. A is also available; it lists selected space groups and is designed as an
instructional aid.

1.

A. ESCHER DRAWINGS AS 3-D PROJECTIONS: ANALOGIES TO REAL MINERALS
PLANE AND SPACE GROUPS

Escher pattern #55 (“Fish™) can be viewed as a planar pattern (plane group) either (a)
considering the colors or (b) ignoring them. It shows rather different symmetry depending on
whether color is considered or ignored. It can also be considered as (c) a 3-dimensional (3D)
projection with each color at a different level. Interestingly, for each of these cases we obtain a
different symmetry.

PART I — PLANAR SYMMETRY (2D)

a) Does this pattern have any symmetry elements (such as rotation axes or reflection lines)
oriented perpendicular to the plane? Do not overlook the color differences.
If so, mark these elements onto your overlay.

b) Considering the color differences, mark a unit cell.

¢) What is the plane group?

d) Now assume you are color blind. Mark the symmetry onto an overlay ignoring color
differences. What symmetry changes occur and where are the new symmetry elements
located?.

e) Does the unit cell change dimensions? Orientation? If so, mark the new unit cell.
f) What is the plane group?

PART II— 3D CONSIDERATIONS

Now assume that the pattern represents a projection of a 3D structure that consists of three

parallel layers. Each color then corresponds to a motif occurring at a different height (blue on

one level, yellow on another, red on a third). Lets consider each of these in turn.

a) How many levels are there? Let’s (arbitrarily) pick one of the colors as the “0” level and
the others at 1/3 multiples perpendicular to the plane. For example: blue = 0; red = 1/3;
yellow = 2/3.

b) Locating the unit cell. As a first assumption, search for points located at sites of
maximum symmetry and use them to define the unit cell (the assumption will prove correct
in this instance). Draw this cell onto an overlay.

c) Determining the symmetry perpendicular to the pattern. It is convenient to do this in
steps.

[1] At cell corners.
What is the “fold” of the rotation axes perpendicular to the pattern? Does more
than one level have to be considered for a rotation?
If so, how many?
In radians, what is the rotation angle? What type of rotation axis has this
characteristic?
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[2] At cell edges (but still perpendicular to the pattern).
What is the “fold” of the rotation axes? Does more than one level have to be
considered for a rotation?
If so, how many?
In radians, what is the rotation angle? What type of rotation axis has this
characteristic?
[3] Within the cells.
What is the “fold” of the rotation axes? Does more than one level have to be
considered for a rotation?
If so, how many?
In radians, what is the rotation angle? What type of rotation axis has this
characteristic?
[4] Other symmetry.
Mirrors? [f so, how many?
d) Determining the space group. We now have enough information to search for possible

space groups. Consider the symmetry elements you determined above. They lead to a
space group symbol of the type _X,, _ _, where you have determined the values of X and

v, both of which are small integers.
It turns out that there are few space groups having these characteristics.
[1] Consult the International Tables to locate possible candidates. Give their full
symmetry and space group number(s).
[2] What is the relationship between these space groups?

2. Escher pattern #70 (“Butterfly””) contains blue, yellow, and red butterflies that are identical except
in color. Consider the colors, but assume that this pattern represents a projection of a 3- I
dimensional (3D) structure consisting of three parallel layers. Each color then corresponds to s
motifs occurring at different heights (blue on one level, yellow on another, red on a third). When
the colors of the dots on the wings are considered, we actually have six layers, and such an array |
also fits one of the space groups quite well. The problem is to find this space group by

considering the symmetry of the pattern. We will then relate the pattern and its symmetry to some
common minerals.
PART I — PLANAR SYMMETRY (2D) ]

a) Does this pattern have any symmetry elements oriented perpendicular to the plane (consider
color differences)? If so, mark it onto your overlay. =

b) Considering the color differences, mark a unit cell. !
¢) Do all symmetry elements of the same “fold” occur in identical “environments™? e
d) If not, how many distinct environments are there?
e) What is the plane group? T
f) Now assume you are color blind. Mark the symmetry onto an overlay ignoring color —

differences. What symmetry changes occur and where are the new symmetry elements

located? -
g) Does the unit cell change dimensions? Orientation? If so, mark the new unit cell. I
h) Which has the larger unit cell? By what factor?
i) What is the plane group? -——
PART II — 3D CONSIDERATIONS o
a) What additional symmetry elements and operations are introduced perpendicular to the £ S

pattern when this is considered as a 3D structure?

— ]
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b) Show where these new symmetry elements occur by marking them onto a transparent
overlay and by giving their fractional xy coordinates (e.g., 0, 0; 12, 12; 0, 1/3, etc.).

¢) What is the relevant Bravais lattice of this projected 3D pattern?

We now have a 3D array that can be described as a space group rather than one of the 2D
plane groups. Such a 3D array might also have new symmetry elements that are oriented
horizontally, either within the plane of the pattern or above it, and they are required to
recognize exactly which space group is represented. With the experience at hand, it would
be difficult to identify each of these new symmetry elements. However, it is possible to use
the available information to identify possible space groups.

d) Using the /nternational Tables for Crystallography, name and give the space group
number (marked at the top of the page in the /T) of one or more space groups that are
compatible with this symmetry? For purposes of this problem, it is acceptable to
hypothesize the presence (or absence) of inversion centers and horizontal axes of rotation,
but no other symmetry elements that are not evident upon inspection.

Hint: note that in the /T the space groups are organized by crystallographic system:
# 1 and 2 - triclinic; 3 to 15 - monoclinic; 16 to 74 - orthorhombic; 75 to 142 -
tetragonal; 143 to 194 - hexagonal; 195 - 230 - isometric. Within each crystal
system they are arranged in order of increasing symmetry.

e) Explain your reasoning in arriving at the space groups you selected.
[It may be useful to generate cross sections that show the types of drawings at each level,
e.g., red butterflies with blue dots, etc. Only a stacking of color pairs is needed to show the
sequence. |

f) Note that these groups correspond to some important minerals. Name a common mineral
that corresponds to a space group given above. [It may be necessary to hypothesize
inversion centers or horizontal axes, as specified in d).]

g) If mirrors or glides were added, which additional common minerals would be included?

h) Two-fold axes occur in the “color-blind” pattern but not in the colored 2-D pattern. What is
their status in the 3-D pattern?

B. ESCHER & SCHASCHL DRAWINGS: ORDER/DISORDER RELATIONS
SUPERSTRUCTURES

3. Escher pattern #78 (“Unicorn”) contains red, yellow, and green unicorns that are identical
except in color.
- a) Ignoring the color differences, determine the symmetry, mark a unit cell, and determine the
plane group -

b) Now repeat a) considering the color differences.

¢) Does the colored or “color-blind” pattern have the larger unit cell? By what factor?

d) Has the plane group changed? If so, to what? _

e) The relation between these two cells is that one could be called a supercell and the other is
then the subcell. Structures formed in this way are called superstructures. Which structure
(colored or “color-blind”) defines the subcell, which the supercell, and which is the
superstructure?

f) Assume that parts of one pattern represent the atoms or atom groups in a mineral structure
that formed at high temperatures and then transformed during cooling to a structure that is
stable at low temperature. Many common oxide, sulfide, and silicate minerals display such
transformations. Which pattern would be the more appropriate one for low temperatures?
Explain your answer.
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(A mineralogical analog might be that of a mineral such as chalcopyrite, in which the Cu
and Fe atoms are randomly distributed onto the metal sites at high temperatures and then
ordered at low temperatures to produce a new cell having different dimensions. [In the case
of pattern #78, the analogy would be with a mineral having three cations (e.g., Cu, Fe, Zn;
Fe, Mg, Mn; etc.) in solid solution at high temperatures which then order upon cooling.])

4. This pattern (“Iselberg” by Irene Schaschl) provides another example of a feature having a
longer periodicity than what by first (and second) glance appears to be the basic repeat unit,
although it is more subtle to see. Note that the tips of the leaves touch in some vertical rows
and do not in others.

a) Draw umt cells:

(1) ignoring the above subtlety, i.e., assume the touching leaves are just a mistake by the
artist, and
(i1) considering that there is a real difference between the touching and non-touching leaves.

b) What is the dimensional (metric) relationship between cells for assumptions (i) and (ii)?

c) The following patterns contain repeating units that also can be considered on two scales,
easiest seen by noting the periodicity first of the squares (U representing, for example,
anions) and then of the squares plus intervening symbols (A #) representing cations.
Assume that none of the ordered repeat units for the following patterns extend across more
than half of the page (so that at least two repeat units are shown). Indicate the width of the
unit cell and give its pattern. Recall that a disordered cell can be considered to have
“average” site occupancies.
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d) Which, if any, of the above sequences are analogous to the “Iselberg” pattern? If none are,
then sketch one that is.

One approach would be to designate each of the “kissing” leaves as A, the other leaves as
€. and the small circles surrounded by scalloping as Q.

e) The sub- and super-periodicity should be evident in the “structure” drawn for d). If a A
represents a Mg atom, € a Ca, and the O as two (CO3) units, then what mineral
intergrowths can be inferred from this abstraction?

Comment: the ordering of vacancies in pyrrhotite, Fej_«S, and many other sulfide minerals
provide examples of an effect such as is seen above (although the metrical details differ).

SUBSTITUTIONS AND STRUCTURAL “DEFECTS”

. Escher pattern #42 (“Shells and starfish”) consists of an intriguing array of clams, shells and

starfish. Note that there are green and brownish snails, and they display different orientations.
Ignore, for now, these differences in orientation.
a) Note that the brownish snails can have either of two orientations (tip up or tip down,
resulting from a 2-fold rotation) and still fit into the pattern.
Using the array on the next page, show where, if anywhere, on the pattern there is a

disruption of the symmetry caused by a “misorientation” of brown snails. Assume the
small points correspond to the spots where the four clamshells or the four green snails
meet, and the heavier points correspond to the positions of the brown snails. Place bold red
marks to show the positions where the brown snails are misoriented.
b) Is this pattern perfectly periodic or is it not, i.e., how good a match is it to a real crystal
such as we might find in a mineral? Here are some leading questions:
[1] If the brown snails represent cations, which of the following pairs are feasible? Use
your knowledge of crystal chemistry te explain your answers.

K* and Cs*

Ti™ and Fe*2

Fe*2 and Fe*3

Fe*2 and Mg*?2

Ca*2 and Mg*2

Si*4 and Al*3

Cu*2 and Zn*?
[2] In what respects is this structure periodic and in what respects is it disordered?

“Problems” such as this occur throughout real crystals and are what make minerals so
interesting and useful as geological indicators. It is features such as these that can
record the origin and conditions of formation and transformation of the minerals.

[3] What experimental techniques might be used to observe features such as are considered
in this problem?
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[" 55 MODULATED AND INCOMMENSURATE STRUCTURES

6. Escher pattern of Birds in space is truly fascinating and reflects a type of disorder that is
becoming increasingly apparent as our methods for studying minerals (and other crystals)

[ become more sophisticated. It shows the two types of birds changing into one another as the
pattern 1s traversed. The large black and white areas can be seen as isolated point defects
(perhaps more realistically, clustered point defects), and they are periodically arrayed.

H The result is the analog of a superstructure. Supercells have dimensions that are multiples
—— of the subcell.

[n some minerals, the supercells are integral multiples (e.g., n =2, 3, 4, ...) of the subcell.

l They are then called commensurate. Sulfides such as chalcopyrite, silicates such as
long-period polytypes of mica and chlorite, and oxides such as hollandites form

commensurate superstructures.

I 5 In other superstructures the supercells are not integral multiples of the subcell. They are
then called incommensurate. Many sulfide and sulfosalts (e.g., pyrrhotite, franckeite),

silicates (e.g., plagioclase, antigorite serpentine), and oxides (e.g., intermediate
tridymite) form incommensurate superstructures.

Incommensurate superstructures have also been called “vernier” materials because their
units mesh like a vernier on surveying or measuring instruments (e.g., transit,

theodolite, alidade).

Superstructures such as are mentioned above are becoming of increasing mineralogical and
industrial interest. Their utility for industrial purposes is that it is possible to make
“designer’” materials whose properties depend on subtle variations in structure such as

-
i
‘ is possible when there are slight dimensional or motif mismatches.

_—

Back to the Escher drawing, it can be difficult to define a unique subcell.
The most unambiguous periodicity in this pattern is the large repeat defined by the large
black (and white) “holes” or “defects” in the pattern. We shall call the cell defined by

these “holes” a supercell and place its origin in the center of the “hole.”

There is also an underlying periodicity of intermediate spacing (and so described as a
subcell), although it is more difficult to recognize and define because of its inexactness.
Viewing the pattern from a distance while squinting helps make the subcell periodicity

evident.
a) On an overlay mark a subcell with a horizontal cell edge that is defined by the white birds.

What is the relation of the width of the subcell to the supercell in terms of numbers of birds
— if the origin of the supercell is placed (i) on the center of the black holes? (ii) on the center

of the white holes?

b) As a further complexity, consider a line in a southeast direction from the black to the white
holes. How many white birds do you count?

¢) Now count in a northeast direction from the black to the white holes. What number of
white birds do you come up with? This difficulty in defining the repeating unit is
characteristic of incommensurate structures where there is not a perfect dimensional match

between the component parts.
d) Draw a unit cell of the substructure. Note that you will have to assume a uniformity that
does not really exist in detail, only in shape. Indicate where you chose the origin and how

you decided on that choice.
e) Draw a unit cell of the superstructure. What are its dimensions in terms of subcell repeats?
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