Spectral Analysis of Normal and Malignant Microarray Tissue Sections Using a Novel Micro-optoelectricalmechanical System (Mod Pathol 2004; 17 Suppl 1: 358A).                 M Maggioni1,3, G L Davis2,3,, F J Warner1,3,4, F B Geshwind4, A C Coppi4, RA DeVerse4,  R R Coifman1,3,4.  Departments of 1Mathematics & 2Pathology, 3Program in Applied Mathematics; Yale University, New Haven, CT and 4Plain Sight Systems, Hamden, CT . 

Background: With light sources of increasingly broader ranges, spectral analysis of tissue sections has evolved from 2 wavelength image subtraction techniques to Raman near infra-red micro-spectroscopic mapping permitting discrimination of cell types & tissue patterns. We have developed & use a unique tuned light source based on micro-optoelectromechanical systems (MOEMS) with new algorithms for spectral microscopic analysis of normal & malignant colon. We compare the results to our previous studies which used a tunable liquid filter light source.

Design: The tuned light MOEMS prototype (Plain Sight Systems Inc.) transmits any combination of light frequencies, range 450 nm – 850 nm transilluminating H & E stained micro-array tissue sections of  normal and malignant colon with a Nikon Biophot microscope.  Hyper-spectral pictures of tissues obtained with a CCD camera (Sensovation) are captured by a computer & analyzed mathematically to discriminate between normal & malignant cells and tissues. 61 hyper-spectral pictures are collected at 400X magnification: 15 pictures of normal colon tissue, from 10 different patients; 46 pictures of malignant colon tissue from 42 different patients. The spectra of each pixel are normalized, compressed & analyzed to discriminate between gland nuclei, gland cytoplasm and lamina propria/lumens. Pixel spectra are automatically extracted & classified as nuclei; spectral features separating normal nuclei from abnormal nuclei are sought.

Results: Spectral analysis, alone, discriminated between normal & abnormal biopsies (adenoma & carcinoma) with diagnostic efficiency of 94.4%. (2F+, 1F). 

Conclusion: With MOEMS  & new algorithms we have increased diagnostic efficiency sensitivity of micrscopic spectral analysis compared to prior results in which we had poor  spectral discrimination (<70% Dx Eff.) but combined spectral/spatial analysis yielded a diagnostic efficiency of 85.5%.   Further spectral/spatial analysis & instrumentation allowing recording of near-infrared light transmission may  yield yet greater diagnostic efficiency.
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(Science of Spectroscopy 2001)

BACKGROUND

With light sources of increasingly broader ranges, spectral analysis of tissue sections has evolved from 2 wavelength image subtraction techniques to hyperspectral mapping. A variety  of  proprietary spectral splitting devices, including prisms and mirror12, interferometers7,11, variable interference filter-based monochromometer9  & tuned liquid crystals8, mounted on microscopes in combination  with CCD cameras and computers  have been used to discriminate among cell types, tissue patterns & endogenous & exogenous pigments. 

We use a prototype unique tuned light source (Plain Sight Systems), a digital mirror device based on micro-optoelectromechanical systems (MOEMS)6 with new  analytic algorithms developed in the Yale Program in Applied Mathematics4, to evaluate the diagnostic efficiency of  hyperspectral microscopic analysis of normal & neoplastic colon biopsies prepared as microarray tissue sections10.

We compare the results to our previous spectral/spatial analysis of colon tissues5 as well as other spectral studies of tissues and cells which use a tunable liquid filter light source 1,2,3.

DESIGN

Platform: The prototype tuned light MOEMS6 transilluminates H & E stained micro-array tissue sections  with any combination of light  frequencies, range 440 nm – 700 nm, through a Nikon Biophot microscope.  Hyper-spectral tissue images multiplexed with a CCD camera (Sensovation) are captured & analyzed mathematically with a PC.

Image Source: 61 (15 normal & 46 malignant) hyperspectral gray scale 400X images (Figure 2) are derived from, respectively, 10 & 42 different tissue microarray biopsies10. 7 additional images are collected from 3 separate colonic tubular adenoma biopsies (3  different patients on “routine” individual slides). 

Data Cube: Each hyperspectral image is a 3-D data cube (Figure 1) with  spatial coordinates x (491 pixels) & y (653 pixels) &  spectral coordinates z (128 pixels) (@ 41 million pixels) representing  transmitted spectra. To find the absorbed light we calculate the logarithm of spectra to satisfy Beer's law.
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Figure 1: Spectral Data-Cube (Data Fusion Corp.)
3 dimensional matrix of size 
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Mathematical Algorithms:

Data preprocessing, normalization & nuclei extraction 

· Denoise & reduce  original 128 spectra  to 64, 480 – 600 nm.

· Normalize, compress & analyze pixel spectra:

· Label spectra from 3 classes - gland nuclei, gland cytoplasm, lamina propria/lumens.  

· Local Discriminant Bases4 finds 4 discriminating spectral signatures

·  10-nearest-neighbor extracts nuclei spectra. (Figure 3). 

Discriminating normal & abnormal nuclei aggregates (patches):  Extract sets of spectra (patches) belonging to the same nucleus, or  neighboring nuclei groups & generate the following support vector machine classifiers:

·  a frequency-wise standard deviation classifier;

·  2 principal component classifiers 

·  a final classifier from the above 3 classifiers (Figure 4).

Discriminating normal and abnormal data cubes: 
- Training set of 2440 patches (Table 1) collected randomly from 61 datacubes (excluding adenomas). 
CRITERIA: Any patch with “no abnormal” nuclei is classified as “normal”; any patch with “any abnormal” nuclei is classified as “abnormal”.
Evaluate mean classification of data cube spectra patches (Figure 5).     

- Test set of 1800 patches (Table 2) is built by the computer randomly selecting 30 patches from  67 data cubes (15 normal, 45 malignant, 7 adenomas) & evaluating the classifier (Figure 5).

Discriminating normal & abnormal biopsies: 
At a threshold of 0.5 (Figure 5) optimal classification of the biopsies is obtained. Assess the diagnostic efficiency of the training and test sets with a  “confusion” matrix (Table 3). Review discrepancies between classifications & biopsy diagnoses.
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       Figure 2: Gray scale images. Left - normal colon; Right - adenocarcinoma
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Figure 3:  Tissue is classified into three classes –  nuclei (red), cytoplasm (green) and lumens (blue). Left - normal colon mucosa; Right -colonic adenocarcinoma.

RESULTS

Training Set

Patches (Figure 4 left):

Patches segregate into distinct maroon (normal) & blue (abnormal) clouds) in which (Table 1) 8/600  normal patches classify as abnormal (F+) & 412/1840 abnormal patches classify as normal (F-). 

8 F+ patches from 3 normal biopsies show normal gland nuclei & adjacent lamina propria (Figure 6) but no carcinoma.

Data cubes, threshhold of 0.5 (Figure 5 left):

Mean classifications of 50 patches/data cube yield 0 F+; 1 F-.

At 0.5 threshold there are no F+. Images with both normal & abnormal patches classify as abnormal (T+) .  There is one F- classification (# 40).

Test Set:  

Patches:

The classifier (Table 2)  results in increased  F+  (11.3%);  F-  (22.6%)  while the diagnostic efficency is comparable to that of the training set.

Data cubes, threshhold of 0.5 (Figure 5): 

Mean classifications of 30 patches/data cube - 2 F+; 1 F-

2 F+ misclassify normal glands & lamina propria as abnormal (Figures 6, 9 left)  

1 F- (#40) misclassifies carcinoma as normal   (Figure 9 right).

Adenomas are correctly classified as abnormal (Figures 6 right, 8).

Final Performance classification on 54 biopsies Table 3): 

2 F+ (80% Sensitivity)  


 1 F- (97.7%) specificity


 94.4%  diagnostic efficiency (5.6% error rate)
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	Figure 4: Final classifier patch projections .   

Left: Training set – Maroon = normal (+1); Blue = Abnormal (-1)

Right: Training Set  separation boundary of normal and abnormal,  

  range set 1.5 to -3.5.   


Table 1: TRAINING SET CLASSIFICATION

	TRAINING SET 2440 PATCHES
	Predicted Class

	
	Abnormal 1436
	Normal 1004

	True Abnormal 1840
	      1428
	 412

	True Normal       600
	            8
	 592


Table 2: TEST SET CLASSIFICATION

	TEST SET 1800 PATCHES
	Predicted Class

	
	Abnormal 1096
	Normal 704

	True Abnormal 1350
	      1045
	             305

	True Normal       450
	          51
	             399
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	Figure 5: Mean prediction of patches in datacubes. 
Normal 1.5; abnormal –Optimal threshhold 0.5. 
Left: Training set (# 1-15 normals; 16-61 carcinomas).  
Right: Test set (# 1-15 normals, 16-22 adenomas, 22-67 carcinomas)
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Figure 6: A normal patch (red) misclassified as abnormal.

	[image: image144.wmf]Figure 7: Two patches (blue) misclassified as “normal” among abnormal patches. While these are misclassifications in the performance measures used, these patches, centered on the lamina propria, should either be excluded as uninformative, or considered normal. In both situations the measures of performance of the proposed algorithm would improve.
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	Figure 8: Example of classification of patches from an adenoma. Some patches are considered normal – green (some of them in the lamina propria), others abnormal - blue.


Table 3: (%) PERFORMANCE OF CLASSIFIERS ON TRAINING AND TEST SETS.

	
	Training Set
	Test Set (*)

	
	2440 patches
	61 data cubes
	52 biopsies
	1800 patches
	67 data cubes
	54 biopsies

	Sensitivity
	77.6
	98.3
	97.6
	77.4
	98.1
	97.7

	Specificity
	98.7
	100
	100
	88.7
	86.7
	80

	False -
	22.4
	1.7
	2.4
	22.6
	1.9
	2.3

	False +
	1.3
	0
	0
	11.3
	13.3
	20

	Pred val +
	99.4
	100
	100
	95.4
	96.2
	95.6

	Pred val -
	59
	93.7
	90
	56.7
	92.9
	88.9

	Diag. Eff.
	82.8
	98.7
	98.1
	80.2
	95.5
	94.4


 (*) The test set data cube & biopsies include 7 additional data cubes from 3 adenoma biopsies; 1 original data cube/biopsy was excluded. Adenomas were not among the test set patches since no true label is assigned to these patches from the training set.
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	Figue 9: Left - normal colon misclassified as “abnormal”; 

Right – abnormal colon (adenocarcinoma) misclassified as “normal”.


CONCLUSION

By spectral analysis alone, we achieved 94.4% diagnostic efficiency (Dx Eff) (97.7% sensitivity, 80% specificity)  in the  hyperspectral discrimination between normal & abnormal  (adenoma & carcinoma) colon biopsies.  

The deterioration in the test classification (of normals compared with the training set) is likely due the relatively small number of normal images collected & poor discrimination of  lamina propria cells  from adjacent normal & malignant nuclei.

The single false negative biopsy is a carcinoma misclassfied as normal.  This may be improved upon with better selection in training set & increasing the number of “normals”. The additional of spatial analyis can aid in differentiating well differentiated malignant glands from normal glands but all adenomas were correctly classified as  “abnormal”.

Finally, for the purpose of classifying the biopsy (not just a small rectangular “nuclear” patch), the algorithm performs well with a final test set 94.4% Dx Eff.

This is a marked  improvement in hyperspectral analysis compared to our prior study5 in which  spectral analysis alone had a 69.4% Dx Eff; combined spectral/spatial analysis improved Dx Eff to 85.8% (92% specificity, 75% sensitivity).

Similar success with enhanced algorithms in combined spectral/spatial analysis of cytologic preparations is reported by Angeletti, et al. at this meeting1,2 .

These studies serve as a “proof of concept”: Hyperspectral analysis can differentiate among disparate stained cell and tissues  with less than 10% error rate. 

Improvements in DxEff are abetted by new technology & algorithms  applicable to diagnostic pathology.

Clinical efficacy remains to be established with larger data sets including various types of “abnormal” controls.
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Data acquisition

Let us think of the spectrum to be measured above each pixel as a 
[image: image9.wmf]128

 dimensional vector. We could have different sets of coordinates in this 
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 dimensional space. One set could be 
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These measurement correspond naturally to a raster scan of the sample: for each 
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, light at frequency 
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 is shone through the sample and the CCD registers the number of photons at that frequency transmitted through the sample. However, since the total amount of light of the source is constant, the amount of light at each frequency is, roughly, 
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, which in our case means 
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 of the total light. To get a good signal to noise ratio we thus need to integrate for a very long time.

However, this happens because of the choice of basis.  If we use a basis of Walsh packets, an orthogonal basis different from 
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This technique is well-known as Hadamard spectroscopy, an example of the more general idea of multiplexing. Observe that there is an orthogonal transformation (or, dually, a change of orthogonal bases) mapping the Hadamard coefficient bijectively to the raster scan coefficients. These are just two representation of the same signal on two different orthogonal bases. Physically, however,  the two measurements are very different as each pattern 
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 of the energy of source, as opposed to the energy of a raster scan packet, which is 
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. This improves the signal to noise ratio of the coefficients of a Hadamard scan by a factor 
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, or, for fixed signal to noise ratio, allows for a scan which is this factor faster.

There remains one problem with the Hadamard scan.  Because the spectra are smooth and due to the structure of the Hadamard patterns,  a priori,  the signal to noise ratio of the Walsh coefficients 
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 decreases rapidly with the index 
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. This is not desirable, since it may be artificially weighting certain information in the spectra.  To amend this problem we performed a randomized Hadamard scan which can be interpreted as randomly shuffling the frequency axis by a bijective map 
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 are almost uniform.  The new patterns 
[image: image48.wmf]w

i

1

 look like noise, but are  another orthogonal basis. There is a simple orthogonal transformation mapping this basis into the old 
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 basis and into the raster basis 
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, thus allowing  transformation of  the coefficients from one basis onto ones of any other.

We acquired our data by performing a randomized Hadamard scan with a fixed random permutation of the frequencies for all the experiments.

	
	

	(A) Randomized Walsh transform (what we actually measure with instrument!).
	(B) Physical spectrum.


Figure ( A), (B)

.

	A1
	B1

	A2
	B2  

	Figure 1: A1,2 Two spectral slices of a normal colon tissue (gray scale)
	B1,2 - Two spectral slices of abnormal colon (adenocarcinoma) tissue (gray scale).


Figure (  ) (A), (B)

	

	Figure ( ): Transmission spectra from abnormal tissue sample. There are 128 coordinates; the scale of the x-axis is approximately the light wavelength in nanometers

	Figure: Absorption spectra corresponding to the transmission spectra computed as described above.



1. Principal Component Analysis

We consider that the spectrum in each pixel is a point in 
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, 
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 dimensional Euclidean space and we order multiple spectra in a matrix, one spectrum per row.  Let 
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 be the matrix thus obtained. 
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 and are ordered in decreasing order, while the columns of 
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 is the axis of maximum variance of the data, the second column 
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 of V is the axis of maximum variance for the projection of the data onto the subspace orthogonal to 
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The principal components form an orthogonal basis of axes of maximum variances for the data, and the singular value associated to each is proportional to the variance of the data in that direction.

Also, the orthogonal projection of the data onto the subspace spanned by the first 
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 principal components is optimal in the sense that it minimizes
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for any 
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 of rank k. In this particular sense the first k principal components are an optimal choice for a k-dimensional projection of the data, and can be used for data representation and denoising. However, nonlinearities in the data can cause principal components to be a bad choice for representation in the data,  as in fact could be any linear projection, since a nonlinear structure can be intrinsically low-dimensional without having to lie in any low-dimensional linear subspace. This is why nonlinear transformation of the data into low-dimensional spaces are often considered.

2. Local Discriminant bases

Local Discriminant Bases (LDB) of Coifman and Saito apply naturally to a family of labelled vectors that represents smoothly varying functions, for example spectra and sounds.  If these vectors are labeled with labels that correspond to more or less well-defined clusters in the data, the vectors can be very high dimensional and clustering or non-linear separation methods between classes can be very expensive if not unfeasible. The goal of LDB is to find directions in these high dimensional spaces such that the data projected onto these directions are still well-discriminated. Then discriminating the low-dimensional projections of the data should be almost as good as discriminating in high-dimension with all the advantages and tools available in lower dimensional spaces. At the same time, while discriminating features are preserved, non-discriminating features are removed, thus denoising the data, at least with respect to the discrimination task at hand.

The search of features in high dimensional spaces is notoriously difficult.  One way some local discriminant bases alleviate some aspects of the “curse of dimensionality” is by searching sub-optimal projections among hierarchially well-organized dictionaries of wavelet or Fourier packets: there are fast algorithms to search through them and to compute the projections onto ensembles of these patterns. We use a version of local discriminant bases that uses arbitrary Haar packet decompositions of the phase-space, but other, even less flexible, wavelet dictionaries would work as well. In all cases the discriminating features have properties of smoothness and locality.

3. Support Vector Machines

This technique solves discrimination problems by finding a function that tries to fit the prescribed labels and stays as least complicated as possible, guaranteeing good generalization error and preventing overfitting. The balance between fitting the labels and some notion of complexity of the classifier is crucial when one is working with a relatively small number of samples compared to the dimension of the space in which these samples are given.  Unfortunately, the computations for Support Vector Machines become quite difficult in high-dimensions, so in practice it is necessary to lower the dimensionality of the data before applying these ideas.

We now describe these steps in detail.

Step 1: extracting the nuclei aggregates
For each datacube, we extract groups of neighboring nuclei, collecting from each image  40  (in general overlapping) square patches 
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 of size 
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 by 
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 pixels. For each patch 
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 we consider those nuclei spectra 
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 in 
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 such that a square patch of size 
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 by 
[image: image78.wmf]4

 around the pixel contains at least 
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% nuclei spectra. If 
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 contains at least 1000 nuclei (this is about 
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% of the surface of the patch 
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) then we keep 
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 and 
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 for classification.
This yields a total of 2440 patches with corresponding nuclei spectra 
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Step 2: compute statistics of the spectra of each aggregate
For each set of nuclei spectra 
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 in the patch 
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, we compute the mean spectrum and, for each spectral band, the standard deviation of the band, as well as the first 
[image: image88.wmf]10

 principal components.

We observe that, while the mean and the first few principal components of normal and abnormal nuclei are extremely similar, the “frequency-wise” standard deviations, and some of the higher order principal components, do show some differences.
At this point we build three classifiers: 
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. The first one takes advantage of the differences in the standard deviations; the second and the third ones take advantage of the differences in some of the principal components. The classifiers are similarly constructed and are finally be combined in a nonlinear voting scheme. 

Step 3: compute first classifier from the frequency-wise standard deviation of the spectra in each aggregate.
Since the standard deviations are smooth functions of the frequency index, we use LDB to find features that “best” discriminate between the frequency-wise standard deviations of groups of normal nuclei and the frequency-wise standard deviations of groups of abnormal nuclei. We keep the first 
[image: image92.wmf]4

 such features and project orthogonally all the standard deviations onto these 
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 features. In the 
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 dimensional space onto which we projected, we run a non-linear support vector machine (SVM) to separate the family of standard deviations correponding to groups of normal nuclei from those corresponding to groups of abnormal nuclei. We optimize over the parameters of the Machine by 
[image: image95.wmf]10

-fold cross validation which also tries to guarantee that we are not overfitting the data. At the same time we weight the classifier by penalizing misclassifications of normal tissue more than misclassifications of abnormal tissue. The best classifier is found under these constraints.

Table ( )

	C1 from s.d. of spectra (2440)
	Predicted Class

	
	Abnormal (1145)
	Normal (1295)

	True Abnormal
	T+ 
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(
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	F-  
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 (
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	True Normal
	F+ 
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%)
	T-  
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The low error in the misclassifications of the normals (false positives) is forced on the classifier, and  induces higher error rates for the misclassifications of the abnormals (false negatives), which we are more willing to accept since not every portion of an abnormal slide is necessarily abnormal.

	

	Figure ( ): This is the projection of the standard deviations of nuclei aggregates onto the first 
[image: image104.wmf]3

 LDB vectors for discrimination of the standard deviations. The color is proportional to the value of the SVM classifier, the more negative the more abnormal, the more positive the more normal.


Step 4: compute second set of classifiers from principal component of the spectra in each aggregate.
This is analogous to the construction of 
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, except that we apply it to each principal component. Let 
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 be the index for the first ten principal components. For each 
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 we consider the 
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-th principal component of each group 
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, to obtain 812 
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-th principal components, some relative to normal nuclei spectra, some relative to abnormal nuclei spectra. Since the principal component is a smooth function of the frequency, we use LDB to find features which discriminate between the principal components of normal and those of abnormal groups. We keep the first 4 such features and project the principal components onto the 4 dimensional space spanned by those. In this 4-dimensional subspace we run SVMs, optimizing the parameters under cross-validation. For each 
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 we obtain a classifier , and a posteriori we choose the 
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 that gives the best result. This turns out to be the classifier working on the 4th and 6th principal components. We denote the corresponding classifiers by 
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Table ( ): Confusion matrices for 
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 is:

	(A) C2I from principal component of spectra
	Predicted Class
	

	(2440)
	Abnormal (856)
	Normal (1584)

	True Abnormal (1840)
	843 
	997 

	True Normal (600)
	13 
	587 

	
	
	


Confusion matrix for 
[image: image116.wmf]C
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:

	(B) C2II from principal component of spectra
	Predicted Class
	

	(2440)
	Abnormal (852)
	Normal (1588)

	True Abnormal (1840)
	839
	1001

	True Normal (600)
	13
	587


(A), (B):The remark following the confusion matrix for the classifier 
[image: image117.wmf]C

1

applies verbatim here. The low error in the misclassifications of the normals (false positives) is forced on the classifier, and induces higher error rates for the misclassifications of the abnormals (false negatives), which we are more willing to accept since not every portion of an abnormal slide is necessarily abnormal.

While the two confusion matrices are very similar, the two classifiers actually are in good part independent.   In particular the samples on which the two classifiers agree is only about 66%.

	Figure A

	Figure B

	Figure ( ) (A), (B): This is the projection of the 4th (A) and 
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th (B) principal components of nuclei aggregates onto the first 
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 LDB vectors for their discrimination. The color is proportional to the value of the SVM classifier, the more negative the more abnormal, the more positive the more normal.


Step 5: Compute classifier on the output of the first two classifiers.

To combine the two classifiers 
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obtained, we observe that these classifiers are “soft”, in the sense that each of them returns a real number (mostly in 
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) whose sign decides the classification as normal or abnormal. Before taking the ‘signum’ of the classifier, we can view each of them as a map of a patch 
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 resp.) the real numbers (concentrated around the values -1 and +1), and we can view both the classifiers as mapping each patch 
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 onto the 3-dimensional vector 
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.  We can then look for a classifier in this space of outputs of the two classifiers: we use SVMs once more, optimizing the parameters under cross validation. The confusion matrix corresponding to this best classifier is shown in Table ( ).

Table ( ): Classifier computed on basis of classifiers C1 and C2

	2440
	Predicted Class

	
	Abnormal   1436
	Normal   1004 

	True Abnormal  1840
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	True Normal        600
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	 The true labels (1=normal, -1=abnormal) in the space of responses of the 3 classifiers

	 The separation boundary (0 level set, in orange color) of the final classifier, which acts on the responses of the three previously built classifiers.


	1800
	Predicted Class

	
	Abnormal (1096)   
	Normal   (704) 

	True Abnormal  (1350)
	1045 (77.4%)
	305 (22.6%)

	True Normal (450)        
	51 (11.3%)
	399 (88.7%)


Diagnostic efficiency
# patches (1800)
data cubes (60)  biopsies (51)

	Sensitivity
	77.4%
	98.3
	98

	Specificity
	88.7%
	93.3
	90

	False Negative
	22.6%
	1.7
	2

	False Positive
	11.3%
	6.7
	10

	Pred Val Pos.
	95.4%
	98.3
	98

	Pred Val Neg.
	56.7%
	93.3
	90

	Diagnostic efficiency
	80.2%
	97.3
	96.7




the application of spatial analysis to the above spectral anaysis.  

	A misclassified normal patch.

	Two misclassified abnormal patches. While these are considered as misclassifications in the performance measures used above, it is arguable that these patches, being centered on the lamina propria, should either be excluded from the training and test set because uninformative, or considered normal. In both situations the measures of performance of the proposed algorithm would improve.

	

	Example of classification of patches from an adenoma. Some patches are considered normal (some of them in the lamina propria), others abnormal.


TABLE: (%) PERFORMANCE OF CLASSIFIERS ON TRAINING AND TEST SETS.

	
	Training Set
	Test Set

	
	2440 patches
	61 data cubes
	52 biopsies
	67 data cubes
	54 biopsies

	Sensitivity
	77.6
	98.3
	97.6
	98.1
	97.7

	Specificity
	98.7
	100
	100
	86.7
	80

	False -
	22.4
	1.7
	2.4
	1.9
	2.3

	False +
	1.3
	0
	0
	13.3
	20

	Pred val +
	99.4
	100
	100
	96.2
	95.6

	Pred val -
	59
	93.7
	90
	92.9
	88.9

	Diag. Eff.
	82.8
	98.7
	98.1
	95.5
	94.4


Garini Y, Katzir N, Cabib D, Buckwald RA, Soenksen D, Malik Z. Spectral bio-imaging. In: Fluorescence imaging spectroscopy and microscopy. Wang XF, Herman B, (eds.). New York, Wiley and Sons 1996:87-124.
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Levenson R, Morgan MB, Spectral imaging properties of melanin, tattoo, and hemosiderin pigments in a series of dermal based deposits. Mod Pathol 2003;16:93A. Abstract 417.

8. 
Levenson RM, Cronin PJ, Isola J, Hopman AHN. Spectral imaging for multicolor transmission in situ hybridization (TRISH): Novel hardware, novel protocols. Mod Pathol 2002;15:341A.  Abstract 1419.

8.      Levenson RM, Cronin PJ, van der Loos CM, Gown AM Spectral imaging for multicolor immunohistochemistry: Novel hardware and software. Mod Pathol 2002;15:340A.   Abstract 1418

True (1996): Rationale for Use of Morphometry:

a. decrease variability in quantifying features of cells and tissues 

b. provide a more quantitative scale than is provided by nonnumerical characterizations of degrees of alteration of structures

c. increase sensitivity in identifying minmal changes in features.

d. quantify effect of changes in a method of tissue processing

e. provide a tool for assessing both the variability of lab assays and estimates of quantitative change 

f. provide reference standards for diagnosis and teaching

g. use as a research tool

Sinard and Morrow (2001) :  Informatics and anatomic pathology


Discipline and practice of usingelestronic informatin systems to facilitate, promote and advance the practice of pathology ....


Trends 



 Virtual pathology practices



Consumerism - errors.



Information age – HIPAA



Genomics: DNA andprotein arraytechnology accekarate thereate if daa accumuation.  Searchformathematically rigorous ways tointegrate andinterpret theprodigiious amounts ofinformationgleaned ... has invigorated thefield of computational biology.


Tasks ahead: 



1.modification of AP systems



2. ...quantitative methodology

3. computationalstrategies for data capture

4. informatics a pathology sub disciplne

Zonios et al (1998): Spectral Pathology


Fundamental limitation of histology = qualitative nature

Prone to interpretation bias, expert pathologists evaluating the same tissue sample do not always come to the same conclusion.


Spectroscopic techniques: reflectance, fluorescence, absorption (visible and infrared), Raman spectroscopy.


Tissue fluorescence: in vivo colonoscopy – normal mucosa and dysplasia exhibit dfferent fluorescence signatures.

Vari et al. (1999): Telepathology & Imaging Spectroscopy  as a new modality in Histopathology.

“PARISS” (TM) prism and mirror spectroscopy system – spectrometer originally designed and implemented for remote Earth monitoring from space and aircraft and astronomical imaging spectroscopy.

Multi-spectral imaging developed by NASA for planetary probes and remote sensing ---- oceanography, geology, climatology and environmentals studies.  Applications in agriculture, process control and graphics.

    The method consists of determination of spectral characteristics of different elements of interest.   Obtaining a properly balanced multicolor digital image, specifying color components of the image and multispectral imaging yields functional maps, showing what and where biological molecules are located within a structure.

Rothman et al (1998) Invited Review – Spectral Imaging for quantiative histology and cytogenetics.


Need for quantitative and objective parameters for diagnosis ---morphometric methods.  Morphometry (+) spectral imaging = multipixel information from a specimen

Furthr image processing and quantitative anlaysis.


Spectroscopic analysis based on ability of a stained histologic specimen absorb, reflect or emit photons in ways characteristic to its interactions with specific dyes.  This information is stored in a cube (x, y) by (s) the latter the spectrum representing the light intensity for every wave length.


Mathematical analysis of the cube = spectral similarity mapping. Constructs new images of specimen revealing areas with similar stain-macromolecule characteristics and enhancing subcellular features.  Nuclear organization and nucleoli domains.

SpectraCube (TM) Fourier spectroscopy: interferometer attached to a CCD camera. 

Macville ME 2001: Spectral imaging of multi-color chromogenic dyes in patholgical specimen.


Spectral imaging is based on Fourier transform spectroscopy and digital imaging. SoectraCube (TM)


Multi-color chromogenic dyes (3).

i. can increase number of parameters studied simultaneously in pathlogicaldiagnosis

ii. 2. provide quantitative data such as positive labeling indices more accurately

iii. 3.solve segmentation problems currently faced in automated screening of cell and tissue specimens.

Khait et al (2001): Multispectral imaging microscope with millisecond time resolution


Liquid crystal tunable filter (LCTF); speed related to response of liquid crystal = milliseconds 


Acousto-optic filter (AOTF): speed of sound in crystal = microseconds, faster.

Ornberg RL et al (1999): Analysis of stained objects in histological sections by spectral imaging and differential absorption.

CRI liquid tunable filter, high resolution CCD.  Peroxidase-AEC labeled tumor tissue; trichrome stained biomaterial implant tissues.

Schultz RA, et al. 2001): Hyperspectral imaging: a novel approach for microscopic analysis.


SpectraPro 556i applied to human heart valve with H&E ...pseudocolor.

Hanley QS, et al. (2000):. Three dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope.


Fourier and Hadamard share many characteristics.

Yagi 2002 : Multipsectral Imagng inPathology: Digital stain


Multispectral imaging system – correct color problems caused by inappropriate brightness, filters, and light sources. Automatically determine percent fibrosis in liver biopsies; determine spectral differences in tissue stained with H&E and trichrome.

Wetzel DL, LeVine SM (1999)  Imaging molecular chemistry with infrared microscopy.

Molckovsky A, et al (2003): Diagnostic potential of near-infrared Raman spectroscopy in the colon: differentiating adenomatous from hyperplastic polyps.


54 ex vivo Raman spectra 20 hyperplastic/34 adenomatous:



identified ad polyp 91% sens; 95% spec; 93% acc.


10 adenomas in vivo distinguished from hyperplastic 



100% sens; 89% spec; 95% accuracy.
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