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ACTIVITY #1.
Theoretical Investigation of Cooling Times
Outline of Lecture Sequence

I.   Motivations


A.  Importance of topics covered:

· heat flow drives geology

· origin of geological time scales

· heat conduction is slow, inefficient

· convection is likely


B.  Applicability:

· to volcanology, hydrogeology, geomagnetism, geomorph, geochem, …, big-picture or small-scale
· simplifying complex equations in any discipline

C.  Student confidence:

· in using (advanced!) calculus 

· in understanding calculus 


D.  Reinforcement:

· math is a valuable tool -- for describing, modeling and predicting, solving problems
II.  Fourier’s Law

A.  Basic concepts

· heat flows from hot to cold

· more heat flow from greater temperature difference ((T)

· less heat flow if (T spread out over longer distance ((x)


B.  Basic concepts expressed symbolically: qx ( (T/(x

· explain symbols, units, meanings


C.  Basic concepts expressed through calculus: qx ( dT/dx

· the need for calculus (e.g. quadratic T versus x could have heat flow in both +x and –x directions; (T/(x could erroneously imply one-directional heat flow)

D.  Examples using qz ( dT/dz (z-direction, e.g. when measuring temperatures in a borehole)(deduce directions and relative magnitudes for all 3 examples)
· T = 30(C at z=1 km; T = 60(C at z=2 km
· T = 60(C at z=1 km; T = 120(C at z=2 km
· T = 60(C at z=1 km; T = 30(C at z=2 km

E.  Turning proportionality into equality: qz = dT/dz

· rationale, discussion of K, representative values for different media

· this equation is Fourier’s Law or Conduction Equation

· example (or h.w. assignment): heat loss through a picture window


F.  Similarity of “qz = dT/dz” to other basic laws

· Darcy’s Law (explain analogous variables, parameters)

· Ohm’s Law (ditto; but note V=IR needs rewriting to produce true Ohm’s Law)

· other contexts exhibiting similar laws: chemical context (e.g. ink drop in water); geomorphic context (e.g. mass movement downslope); etc.
· conclusion: solutions to any one of these equations apply to all others (( no need to ‘re-invent the wheel’ working in other contexts)
· conclusion: Fourier’s Law in all its forms is fundamental to nature – a universal expression of how things work


G  Using qz = dT/dz: observing Earth’s heat flow

· how done; land versus sea-floor measurments

· results; significance of magnitude

· Bullard conjecture (a reasonable hypothesis that turns out to be wrong)

III.  The Diffusion Equation

A.  Basic concepts

· need for a second equation (2 unknowns: qz and T)

· a conservation equation (energy to supplement Fourier; mass to supplement Darcy; charge to supplement Ohm)

B.  Divergence: a mathematical tool for assessing conservation
· derivation, for 1-dimensional heat flow – vertical heat flow through a ‘slice’ of medium (explain spatial rates, like (qz /(z)

· generalize to 3-D; interpret symbols, meanings; other contexts
C.  Heat budget of a slice of the medium (1-dimensional heat flow)
· expressing contributions from cooling (CP), heat sources (()
· conservation of energy

· the need for partial derivatives

· partial derivatives: a sigh of relief

D.  The Diffusion Equation
· conservation of energy + Fourier’s Law ( (T/(t = k(2T/(z2 + (/(CP
· K versus k; interpretation of equation

E.  Interpretation of the Diffusion Equation: the Nature of Diffusion
· the Verhoogen view: diffusion is one-way in time

· the Verhoogen view: diffusion is an averaging process, spatially
F.  Working with the Diffusion Equation

· steady-state and time-dependent (transient) situations
· obtaining simple solutions (1-D, steady, no or uniform heat sources) 

· a simple solution for 1-D steady heat flow from a sphere; application to the Earth, and the need for time dependence
· example of time-dependent solution (graphed) 

IV.  Scaling the unsteady Diffusion Equation: a simple approach

A.  Characteristic values

· definitions; examples for Earth


B.  Scaling the equation (– for simplicity, with no heat sources)
· replacing derivatives with characteristic values

· recovering a non-calculus simplicity; diffusion is a relative thing

· with no heat sources, we find tC ~ L2/k


C.  Examples and implications

· for lithosphere ( Bullard conjecture no good

· for whole Earth ( no conductive steady state; need for convection

· other thermal applications: cooling of Sierra batholith, of subducting slab, of borehole

· applications in other contexts: tidal intrusion of seawater into aquifer; time scale for geomorphic sculpting, time scale for geomagnetic weakening (e.g. during reversals)
Problem Set: Heat Flow and Earth’s Thermal History
Note: assign questions 1 and 2 after the first lecture (Fourier’s Law, sections A. through F)
1.  Energy Conservation?

Using the conduction equation, estimate how many calories of heat will be saved per day if a room is heated to 65(F rather than 72.2(F.

[Assume that the outside temperature is 32(F; that the room is 9 meters on a side; that the heat is conducted through glass windows which are 3 cm thick; and that the area of windows is 6 m2] 
[Note: for the thermal conductivity of glass, you can either look up the value in a reference like the Handbook of Physical Constants, or you could pretend that glass is kind of like an igneous rock…]
2.  Hot Sill

A sill that had been intruded into a region in Mesozoic times is now covered by sedimentary formations.  The temperature within the sill is now found to vary laterally according to 

                                 T  =  -0.5x2  + 30x + 10(
where T is in degrees Centigrade and x is distance in kilometers measured from the eastern-most edge of the sill.  

Using the conduction equation, find the horizontal heat flow (its direction and magnitude) associated with this sill at its eastern-most edge (x=0 km) and at its western-most edge (x=40 km). 

[hint#1: sketch the sitch!]


    [hint#2: bite the bullet (i.e. use calculus)!]

 [hint#3: watch your units!]                                 [hint#4: read hint#3!] 

Note: assign questions 3 and 4 towards the end of the lecture sequence
3.  Radioactive Fractionation?

Assume the mantle and core have the same heat production as the crust.  Find the amount of heat flow produced within the Earth in this case.  If the Earth is in a steady state, how much heat leaves the Earth?  What do you conclude about this assumption (how does your calculation compare with observation?)?  Can you draw any conclusions about the composition of the interior?

4.  Cool-down Time: a solid understanding

Use dimensional analysis (or the results of the dimensional analysis discussed in class) to estimate how much time was required for the Palisades intrusive sill to cool appreciably.  Assume the sill dimensions are 25 km ( 25 km ( 0.3 km, its diffusivity is similar to that of granite, and its initial temperature was 750(C.  

