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ACTIVITY #1.
Theoretical Investigation of Cooling Times
Tips for Success
Comfort and reassurance to the students about all of the math in this topic are key.  

· Initially, the class should be encouraged to view dT/dz (for example) as (T/(z.  

· Why “a sigh of relief for partial derivatives”?  Consider being asked to differentiate

T = {tln(t)exp(tt)}z2 + {sin[tln(1+t)-exp(t)]}z + {((1+tan(t))-2.5dt}

(oh, no!)

-- but only with respect to z (--whew!!)

· Using routine terms to explain ‘spatial rates’ of change, like dqz/dz (ultimately (qz/(z), might be the most important part of deriving the divergence or the diffusion equation.  One goal is to get the students to see the meaning behind the symbols rather than just an alphabet-soup jumble of symbols.  For example, in that slice (of thickness dz) through which heat flows vertically, 
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we might imagine a situation in which the heat flow is not constant but varies; so, if qz is the heat flow into the bottom of the slice, the heat flow out of the top will be different, and could be written qz + (qz, or even qz + dqz.  Let’s say the heat flow increases with height at a ‘rate’ of 3 heat flow units per meter; then dqz/dz = 3 hfu/m.  So, if the slice is 5 m thick, then the amount of vertical heat flow will increase from bottom to top by _?_ heat flow units – the class can call out 15 hfu, which you can point out they determined by multiplying dqz/dz times dz.  That is, the change in heat flow is (dqz/dz)dz (or [(qz/(z]dz).  
This is the part of the lecture worth dragging out!  The students need to be able to mentally interchange numbers, symbols, and concepts here.  
· The students will solidify their understanding of all this by working to complete the problem set – and getting feedback on any errors in their work.  
In the lecture sequence, the diffusion equation is derived in Cartesian coordinates (i.e., one-dimensional heat flow, in the z-direction, though obviously it can easily be generalized to 3 dimensions).  But I would not recommend presenting and solving the (steady-state) diffusion equation in spherical coordinates (as a precursor to showing that a steady-state conducting Earth would be nearly entirely molten).  Instead, having solved the equation for a flat earth (i.e., one-dimensional heat flow) with heat sources, very easily yielding a quadratic solution, I think it is sufficient to then present the similarly quadratic solution for one-dimensional, radial heat flow through a sphere.  
The very easy and familiar example of characteristic values and derivative replacement I like to use in this class is for the case of oceanic lithosphere.  A typical thickness, L, for the oceanic lithosphere is ~ 100 km.  With its surface temperature ~ 0(C, and its bottom temperature ~ 1200(C – 1500(C (if the base of the lithosphere is marked by the temperature at which partial melting begins), a typical or characteristic temperature, TC, for the lithosphere might be ~ 1000(C (in round numbers).  As an order-of-magnitude estimate of the temperature gradient, dT/dz, within the lithosphere, then, we might try 1000(C / 100 km or 10(C/km – or, symbolically, TC / L.  (Although this is distinctly less than the measured surface gradients, we expect such gradients to level off somewhat).  That is, in the diffusion equation we could begin the scaling analysis by writing 
dT/dz  ~  TC / L    .
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