Course Design

Rachel Beane & Heather Macdonald

Chuck Bailey photo

One Course Design Process

- Consider course context
- Articulate goals
- Design activities
- Plan assessment & feedback

Figure modified from D. McConnell

Focus on one of your courses

Consider course context

- First year seminar?
- Majors course?
- Required? Elective?
- Class size?
- Who are the students?
 - What do they want to learn?
 - What prior knowledge or misconceptions might they have?
 - How do they learn?

Photo by C. Ormand, serc.carleton.edu

Course context: Student learning styles

Data from 2012 Early Career workshop participants

Course context: Students' approach

Elapsed Time (mins)	0	2	4	6	8	10	12	14	16	18
Read										
Analyze										
Explore										
Plan										
Implement										
Verify										

Novices

Experts

From K. Wirth with data from Schoenfeld (1987) Mathematical Problem Solving

Experts' approach

- What kind of problem is this?
- What is the best strategy for solving it?
- How will I know if I solved it?
- How could I do it better next time?
- What additional information do I need?
- What use is this new information?
- How can I use my new understanding to solve different kinds of problems?

From K. Wirth with information from Schoenfeld (1987)

Teaching Styles

- How do you like to teach? Why do you teach?
- How do you want to interact with your students?
- What do you find most satisfying when you teach?
- How flexible are you?

Designing a Course

- Consider course context
- Articulate goals for the course
 - Overarching goals
 - Ancillary goals
- Design activities
- Plan assessment & feedback

Goals-based approach

Emphasizes designing a course in which students

- Learn significant content and skills
- Practice thinking for themselves and solving problems in discipline
- Leave prepared to apply knowledge and skills in future

Sets goals that

- Are student centered
- Involve higher-order thinking skills
- Can be assessed (through problem sets, papers, exams...)

Goals: Student-centered

- Student-centered
 - What will they learn?
- Content-centered
 - What will I cover?

Photo by S. Fox, serc.carleton.edu

Goals: Student-centered

- Student-centered
 - What will they learn?
- Content-centered
 - What will I cover?

Example:

I want to teach students about geologic history.

Goals: Student-centered

- Student-centered
 - What will they learn?
- Content-centered
 - What will I cover?

Example:

I want to teach students about geologic history.

Focus on goals that involve higher-order thinking skills

Bloom's Taxonomy

Taxonomy of Educational Objectives (1956)

Goals: Focus on higher order thinking

derive, predict, analyze, design, interpret, synthesize, formulate, plan, correlate, evaluate, create, critique, adapt

Example:

I want to teach students about geologic history.

Reworked:

Students will synthesize the geologic history of the Virginia coastal plain.

Overarching Goals

What do you want students to be able to do as a result of having taken your course?

- What do you do?
- What kinds of problems do you want students to be able to tackle?
- How might students apply what they have learned?
- How will they be different at the end of the course?

Consider your course...

What are the overarching goals?

For the goals, consider

"When students have completed my course, I want them to be able to..."

Review overarching goals

- Does the goal focus on higher order thinking?
 (e.g. derive, predict, analyze, design, interpret, synthesize, formulate, plan, correlate, evaluate, create, critique, adapt)
- Is the goal student-focused?
- Could you design an activity/assignment that would allow you to determine whether students have met the goal or not?

(does the goal have "measurable outcomes"?)

Ancillary goals

Skills

- Reading the professional literature
- Working in teams
- Writing and quantitative skills
- Critically assessing information from the web
- Laboratory technique
- Self-teaching, peer teaching, oral presentation
- •

Practicing oral presentations, www.bowdoin.edu, academic spotlight

Course design: activities and assignments

- Consider course context
- Articulate goals
- Design activities and assignments

Students learn when they are actively engaged in practice, application, and problem solving (NRC, 1999 How People Learn)

Plan assessment & feedback

Goals

Consider whether an activity or assignment...

- has an effective "hook" that engages students?
- places new knowledge, tasks, and experiences into the context of what students already know?
- requires students to synthesize, discuss, extend, or reflect on what they have learned?
- meets the stated goals?
- has a way to assess whether students have met the goals?

5 E's approach: Engage, Explore, Explain, Elaborate, Evaluate Bybee, 1989

Often many ways to design activities to meet a goal.

If I want students to be able to analyze map data, I might:

- Prepare a Gallery Walk of maps around the classroom
- Ask a series of directed questions about a map (in lecture or as homework)
- Have students prepare clay models of topo maps and share them with the class
- Ask students to complete an interpretative cross-section during lab
- Have students prepare a map of their hometown using GIS and identify possible hazards

Provide repeated opportunities to practice, with feedback.

Often many ways to design an activity to meet a goal.

Start early; allow yourself time to think of ideas for activities.

For a start...

What are several activities might you design to meet one of the overarching goals you wrote for your course?

- 1. Individually, read one of the scenarios.
- 2. As a table, discuss the problems.

To promote characteristics of self-regulated learners and experts, we should guide students in metacognition.

Metacognition is broadly defined as thinking about thinking.

For students, this can be "learning to learn."

Elapsed Time (mins)	0	2	4	6	8	10	12	14	16	18
Read										
Analyze										
Explore										
Plan										
Implement										
Verify										

Elapsed Time (mins)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Read																				
Analyze																				
Explore																				
Plan																				
Implement																				
Verify																				

Teaching students metacognitive approaches

Three basic steps to teaching students metacognition:

- 1. Teach students that their ability to learn can be changed
- 2. Teach planning and goal-setting
- 3. Give students opportunities to monitor their learning and adapt as necessary

Summarized from Lovett, 2008, Educause Learning Initiative Conference

Designing activities to support metacognition

- Think Aloud
- Questioning
- Reciprocal Teaching
- Reading Reflections
- Wrappers
- •

Reading Reflections

- What is the main point of this reading?
- What did you find surprising? Why?
- What did you find confusing? Why?

Example from K. Wirth http://serc.carleton.edu/
NAGTWorkshops/
metacognition/activities/
27560.html

- Why is the research significant?
- What is the main argument of the paper?
- What is the evidence?
- How are the data presented and why?
- Are the assumptions reasonable?
- Are the interpretations consistent with what we know?
- Could alternative hypotheses be derived from the data?

Example questions developed by Rose, Sablock, Jones, Mogk, Wenk, Davis at 2008 workshop, The Role of Metacognition in Teaching Geoscience http://serc.carleton.edu/NAGTWorkshops/metacognition/group tactics/28890.html

Research Project Wrapper

- What did you learn about research & about minerals through this project?
- What did you learn about your own research habits and preferences?
- When were you excited and/or frustrated during the project?
- If you did a similar project in the future, would you approach the project the same or differently?

I really like that you have us write these reflections for all of the projects throughout the semester and similarly with the lectures. It makes me appreciate and understand everything that I did and learned.

Exam Wrapper

- 1. Approximately how much time did you spend preparing for this exam?
- 2. What percentage of your time was doing the following:
 - a. Reading textbook sections for the first time
 - b. Rereading textbook sections
 - c. Practicing problems
 - d. Reviewing notes
 - e. Reviewing class materials
 - f. Other (specify)
- 3. After reviewing your graded exam, estimate the percentage of points lost due to the following:
 - a. Lack of understanding the concept
 - b. Not knowing how to approach the question/problem
 - c. Carelessness
 - d. Other
- 4. Based on your responses above, how do you plan to prepare differently for the next exam?

Assessment

- Consider course context
- Articulate goals
- Design activities
- Plan assessment & feedback
 - Formative assessment
 - Summative assessment

Assessment: Minute Paper

- What was the most important thing you learned in today's class?
- What question do you have about today's class?
- What was the muddiest point of today's class?

http://www.flaguide.org/cat/minutepapers/minutepapers1.php

Assessment: Two-stage cooperative exam

 Goal: Exam is learning experience where students work problems & understand the process of their reasoning

Photo by Mark Leckie.

- Method: Students take exam first individually, then again collaboratively
- Grading: Weighted average of individual and collaborative components

Assessment: Rubrics

Criteria	Exemplary	Good	Acceptable	Unacceptable
Organization				
Figures				
Interpretations				

"Learning increases when learners have a sense of what they are setting out to learn, a statement of explicit standards they must meet and a way of seeing what they have learned." *Loaker, Cromwell and O'Brien (1986)*

Rubrics improve consistency & efficiency when grading.

http://serc.carleton.edu/NAGTWorkshops/assess/rubrics.html

Assessment

http://serc.carleton.edu/NAGTWorkshops/assess/types.html

Context for Today's Sessions

- Articulate goals when designing courses
- Design & adapt activities and assessments with goals in mind
- Design activities to foster self-regulation & help students "learn to learn"
- Expand your "toolbox" of teaching & assessment strategies

