1 Adjust the axes to show longitude and latitude on your map

Let us use the Matlab script that we made earlier and saved as £1.m. In the version that we give
you, I have annotated each of the lines a little so that you can remember what it does.

Now, simply type the name of the file (without the extension) in the Matlab prompt, and you’ll
get a picture with the axes showing, simply, the pizel numbers of the map.

Note: if you copy and paste the lines below from within your PDF viewer, some quotes (’) may not
copy right. Add those quotes by hand, or copy them from the program files £1.m through £8.m.

>>f1

Let’s be explicit about what the axes are showing, even though we will change it in a minute.

>>x1=xlabel('easting (pixel number)');
>>yl=ylabel('northing (pixel number)');

Now, we get the data range of the easting, in decimal degrees of longitude. And then the same
for the northing, in latitude. We know what the relevant variables and their id numbers are since
these were contained in the variables VarName and VarIDs, which you can inspect again to be sure.

>>xr=netcdf.getVar(ncid,0);
>>yr=netcdf.getVar(ncid,1);

We want to supply this information to the map-making command to get something that is properly
showing longitudes and latitudes. Note that the (first row, first column) element is at longitude
xr (1) and latitude yr(2), and that the (last row, last column) element is at longitude xr(2) and
latitude yr(1). We need to do axis xy to tell Matlab that we get the larger latitudes up above,
as otherwise, the default for imagesc is axis ij, which interprets the data as an indexed matriz
instead of as a Cartesian object. Check help imagesc for the conventions and look at your output!

>>imagesc(xr,yr([2 1]),zr)
>>axis xy

Now we have the map properly geographically referenced, let us relabel the axes also:

>>x1=xlabel('longitude (degrees)');
>>yl=ylabel('latitude (degrees)');

And finally, end by restricting the range and equalizing the axis stretchings again, and issue the
print command. One unit on the horizontal axis with one unit on the vertical axis will form a
little square. This behavior pertains to the visual appearance only, and the nearer to the poles your
area is, the less appropriate this choice will be. In reality lines of longitude converge to the poles.

>>axis image
>>print -dpng mynewtopo2

Save everything we did in this example into a Matlab program file, let’s call it £2.m.

o
—
n

m
juify

505

latitude (degrees)

o
<

495

longitude (degrees)

Figure 1: This figure is the result of the material in this section. It’s what you get from f£2.m.

2 Draw a straight-line profile through your map

You can just go on with the exercise, but if you had quit Matlab and restarted it just now, you can
execute £2.m to get back in business. In this section we will be making £3.m.

>>f2

Actually, to prepare two figure panels, let’s issue a subplot command first, where we will assign a
handle, which I call ah(1), to the first panel (last argument to subplot), of a figure that will have
panels in two rows (first argument to subplot) and one column (second argument to subplot).

>>ah(1)=subplot(2,1,1);
>>f1

You see that we are back in pizel space, which is how Matlab sees the data anyway, and which is
easier for you if you want to pick out specific rows or columns. We’ll pick pixels between which to
draw proiles, and then readjust the plot axes to show longitude and latitude again, later.

Open the second figure panel, sticking to the overall layout, and assign a handle to it:
>>ah(2)=subplot(2,1,2);

Addressing a row, taking all columns, e.g. the 300th row, goes as follows. Remember the matrix
variable containing the plotted data is called zr. Thus, we extract the 300th row and assign it to

>>pri1=zr(300,:);
If you plot this variable, you’ll see how the topography varies as a function of the horizontal variable.

>>plot (pril)

But let’s be smarter than that, and assign the correct longitudes to this profile. We know what
they were: they go between xr(1) and xr(2), and there are exactly zdim(1) of them. However,
we still need to generate the proper longitudes, as many as we have data values in the profile, and
they are linearly spaced. Then, plot the result.

>>lonl=linspace(xr(1),xr(2),zdim(1));
>>plot(lonl,prl)

Now it looks properly referenced! Finish up by trimming the axes to the data range, put on labels.

>>axis tight
>>x1(2)=xlabel('longitude (degrees)');
>>y1l(2)=ylabel('elevation (m)');

Make the top panel active again, replot the data in the top panel in longitude/latitude coordinates.

>>axes(ah(1))

>>imagesc(xr,yr([2 1]),zr); axis xy
>>x1(1)=xlabel('longitude (degrees)');
>>y1l(1)=ylabel('latitude (degrees)');

Save everything we did in this example into a Matlab program file, let’s call it £3.m.

latitude (degrees)

longitude (degrees)

600 F T T T T T T 3

elevation (m)

[T S

(=] (] [} (]

S &5 & S

I T T I
| |

—_

o

(=]
T

1

I I I I I I
2 3 4 5 5] 7

longitude (degrees)

Figure 2: This figure is the result of the material in this section. It’s what you get from £3.m.

3 Identify a straight-line profile through your map

Clearly what’s missing from the previous section is for the top panel to identify where the profile
was taken. We should be plotting a line at the appropriate location on top of the top panel, to
identify the location of the profile. In this section we will be making £4.m.

To make it more interesting, I will switch to a profile along the vertical direction. Again, start with
£2 and f1 to recoup the variables if you lost them, and for a visual of which pixel it is that you
want profiled, and open the subpanels.

>>f2; ah(1)=subplot(2,1,1); f1; ah(2)=subplot(2,1,2);

Looks to me like somewhere around pixel 550 it gets interesting, so extract that profile, assign it to a
new variable, and produce the appropriate latitudes for it! Same as in the previous section, mutatis
mutandis of course: longitudes become latitudes, first dimensions become second dimensions, and
so on. I'm even switching the axes around so you don’t get confused.

>>pr2=zr(:,550);
>>lat2=linspace(yr(2),yr(1),zdim(2));
>>ah(2)=subplot(2,1,2);

>>plot (pr2,lat2)

>>axis tight
>>x1(2)=xlabel('elevation (m)');
>>y1l(2)=ylabel('latitude (degrees)');

At this point, repeat the steps from the previous section to put the map on top, properly referenced.

>>axes(ah(1))

>>imagesc(xr,yr([2 1]),zr)

>>axis xy

>>x1(1)=xlabel('longitude (degrees)');
>>y1l(1)=ylabel('latitude (degrees)');

And then keep this top panel active so that all further plot commands go right on top:
>>hold on

But we need to still figure out at which longitude pixel number 550 was located, so we can plot a
line identifying it! We have all the pieces in hand to be able to find it. It is a matter of simply
finding what the 550th column out of the total number of columns is (we get this from zdim(1)),
as a proportion of the total longitudinal interval (which we get from xr). But before we do that we
need to realize that the data format has the variable zdim as an integer, which we need to convert
to a float to be able to do any computation with it. Using Matlab’s function double:

>>lonpr2=xr(1)+(550-1)/double(zdim(1)-1)*(xr(2)-xr(1));

You might have to write this down on a piece of paper to properly understand it. But then you
should be able to do the equivalent thing for when the profile is longitudinal, and you need to figure
out the proper longitude! All that is left is to add the line on to the map.

>>plot([lonpr2 lonpr2],yr,'LineWidth',2,'Color','k")
>>hold off

515

51

50.5

latitude (degrees)

longitude (degrees)

3]
juify
T
|

505+ 3

[,
(=]
T
|

latitude (degrees)

4951 j‘/_» i
L L L L L L

100 200 300 400 500 600
elevation (m)

Figure 3: This figure is the result of the material in this section. It’s what you get from f4.m.

4 Isolate and analyze a polygonal piece out of your map

Here you will learn how to draw a polygon, free-hand, plot it on your map, and then compute
statistics of the numbers that Matlab finds for you inside that polygon, or out. We make £5.m. We
begin once again by calling the pixel-referenced map, after clearing the figure.

>>clf
>>f1

To get crosshairs and draw a freehand polygon, type

>>[pgl,pg2l=ginput

and click away, ending with enter. When I was done, I had obtained the result:
pgl =

305.3191
520.9850
692.4988
549.8537

pg2 =

280.2661
394.0426
225.92561
134.2247

I can now plot the polygon on the map! Note that I close it!

>>hold on
>>plot(pgl([1l:end 1]),pg2([1l:end 1]),'LineW',2,'Color','k"')
>>hold off

And now I want to figure out what the mean value, the variance are, and so on, of the values that lie
within the polygon. This isn’t particularly complicated: Matlab has a function for it, inpolygon.
In the pizel domain, I first have to tell Matlab what the column numbers and the row numbers are
that I have:

>>xrall=double(1l:zdim(1));
>>yrall=double(1:zdim(2));

Then I need to turn this into a grid with a pair of (row,column) numbers for each of the points in
my dataset. For this, we use the function meshgrid.

>>[xrall2,yrall2]=meshgrid(xrall,yrall);

And then I need to use the inpolygon function to return logical indices to all of those entries in
the matrix zr that fall inside of my polygon:

>>inside=inpolygon(xrall2,yrall2,pgl,pg2) ;

At this point I would like to check that I've gotten it right. The best way is to generate a copy of
the data set, set all the values inside the polygon to 1 and all the values outside (using the negation
operator ~) to 0, and take a look.

>>zr2=27zr;
>>zr2(inside)=1;
>>zr2(~inside)=0;
>>imagesc(zr2)
>>axis image

After verifying that I have indeed properly isolated the polygon of interest, I can simply operate on
the original matrix, using the logical array variable inside that I just created, with the functions
mean and var. Should there be any NaN values inside, I should use nanmean and nanvar. By not
closing the following statements with a semicolon, the values will be reported to the prompt. Before
I do so I will plot the map again using £1, and plot the polygon on top again.

>>f1

>>hold on

>>plot(pgl([l:end 1]),pg2([1:end 1]),'LineW',2,'Color','k")
>>hold off

>>mean(zr (inside))

>>var (zr (inside))

For me, the results for the mean and wvariance were:
ans =
362.7773
ans =
1.2599e+04
Can you rewrite this function in geographical instead of in pizel coordinates? If all you want is the

plot at the end, you'd start from £2 and then tweak the material in this and previous section to
overlay the polygon in longitude and latitude instead of in column and row (pixel) numbers.

500

Figure 4: This figure is the result of the material in this section. It’s what you get from £5.m. On
the left we identify the polygon explicitly, on the right we show the map with the polygon on top.

5 Revisiting the histogram

A histogram finds the number of times a certain range of values occurs, within the edges of a set of
predefined bins. If you had millions of observations, and you could set the bin widths to something
infinitesimally small, and you normalized the area under the histogram to be exatcly one, you'd be
getting something that reflects the statistical distribution by approximating the probability density
function. Matlab’s hist function is very flexible. Let’s run f1 to get our variables back in place,
and then make some histograms with varying numbers of bins. We will be making £6.m.

Note that the vertical axis is in unnormalized counts, the number of pizels that have a value within
the bin range. With this type of data, such an accounting is only a crude approximation of a proper
hypsometry, which should weight the occurrences of certain elevations by their area. Here, every
pixel does not represent the same area, yet every one of them counts equally towards the total.

>>f1

>>ah(1)=subplot(2,3,1); hist(zr(:),6)
>>ah (2)=subplot(2,3,2); hist(zr(:),12)
>>ah(3)=subplot(2,3,3); hist(zr(:),24)

I’'m now going to address all of the axis handles at the same time and set the limits of the horizontal
axis to the minima and maxima of the data set under consideration.

>>set(ah, 'xlim', [min(zr(:)) max(zr(:))])

While I'm at it, I realize it really would be nice if the areas under every one of the histograms were
normalized to unity. To accomplish this, I will use a version of hist that returns output, which I
then need to fiddle with and plot myself, using bar. I'll do this on the second row, and after that,
it’s a pretty safe bet that I will be able to also equalize the axis range in the vertical dimension.

>>ah (4)=subplot(2,3,4);

>>[a,bl=hist(zr(:),6); br(l)=bar(b,a/sum(a)/[b(2)-b(1)],1);

>>ah(5)=subplot(2,3,5);

>>[a,b]l=hist(zr(:),12); br(2)=bar(b,a/sum(a)/[b(2)-b(1)]1,1);

>>ah(6)=subplot(2,3,6);

>>[a,bl=hist(zr(:),24); br(3)=bar(b,a/sum(a)/[b(2)-b(1)],1);
>>set(ah(4:6), 'xlim', [min(zr(:)) max(zr(:))],'ylim', [0 1/(max(zr(:))-min(zr(:)))]1*5)

Piece together the arguments to bar (center, height, width) by consulting the help — and changing
my choices. It is easy to verify that the area under these histograms is exactly one. For this reason,
I can use Matlab’s statistical functions to plot reference distributions right on top of the lower row
of panels. I can tell these distributions aren’t normal (and so can you!), but if we compare them
quantitatively, we’ll get an even better idea.

>>dxr=linspace(min(zr(:)) ,max(zr(:)),100);

>>dyr=normpdf (dxr,mean(zr(:)),std(zr(:)));

>>for index=4:6

>> axes(ah(index)); hold on; plot(dxr,dyr,'LineW',2,'Color','r")
>>end

Note that I'm starting to take real advantage of the axis handles to address them individually as
part of a for—end loop!

0 0
0 200 400 600 0 200 400 600 0 200 400 600

x 10 x 10 x10

0 0
0 200 400 600 0 200 400 600 0 200 400 600

Figure 5: This figure is the result of the material in this section. It’s what you get from £6.m. Can
you now add the labels for the horizontal and vertical axes?

10

6 Looking at topographic slopes

As the last bit in this mini-series, let us try to look at how “rough” topography is. A slope is a
derivative, and a derivative is (the limit of) a difference that is normalized by the step size in the
direction in which the difference is being taken. We will be making £7 .m.

We adapt £3 by plotting, instead of the simply extracted profile, the first derivative of that profile.
We use Matlab’s function diff, whereby we note from its help page that it computes a first
difference, which means that it returns one less point of output than what you feed it as input.
Consequently, we need to quote the longitudes of where the derivative is taken in a manner that is
shifted by half a pizel compared to where the original profile was quoted.

The only important change (other than that I changed the row number for this example, and added
the profile location in the top panel, and of course, adjusted the labels for the vertical axis in the
bottom panel) is in the line

plot([lon1(2)-lon1(1)]/2+lon1(1:end-1),diff(pr1)/[lonl1(2)-1on1(1)]1/1000)

latitude (degrees)

longitude (degrees)

—_
o
T
|

8]
T
1

¢n
|
!

slope (km/degree)
o

-
o
I
|

N
&
I
|

2 3 4 5 ¢} 7
longitude (degrees)

Figure 6: This figure is the result of the material in this section. It’s what you get from £7.m.

11

7 Looking at topographic roughness

In the previous section we looked at the derivative in a certain direction at a certain profile location.
Matlab is smart enough to plot the derivative in a certain dimension for all the rows (or columns) of
the map. Matlabs first is the row dimension (down the matrix), its second is the column dimension
(across the matrix). We will be making £8.m.

We adapt £2.m quite simply by changing the variable to be plotted from zr to diff (zr, [1,1) for
the latitudinal derivative, and to to diff (zr, [1,2) for the longitudinal derivative.

Once again, the changes are minor. We need to compute both the longitudes and the latitudes of
our data grid:

>>xr=netcdf.getVar(ncid,0);
>>lonl=linspace(xr (1) ,xr(2),zdim(1));
>>yr=netcdf.getVar(ncid,1);
>>lat2=1linspace(yr(2),yr(1),zdim(2));

And then we need to compute the derivatives, and plot those in subpanels. To adjust the range
of colors being plotted to one that shows meaningful variations, we use Matlab’s caxis command.
And finally, we add a colorbar and invoke title for annotation.

>>ah(1)=subplot(3,1,1);

>>imagesc(xr,yr([2 1]),diff(zr,[1,2)/[1lon1(2)-1onl1(1)]/1000)
>>axis image xy; caxis([-3 3]); colorbar
>>t1(1)=title('horizontal (longitudinal) slopes (km/degree)');
>>ah(2)=subplot(3,1,2);

>>imagesc(xr,yr([2 1]),diff(zr,[],1)/[1at2(1)-1at2(2)]/1000)
>>axis image xy; caxis([-3 3]); colorbar
>>t1(2)=title('vertical (latitudinal) slopes (km/degree)');

The above two normalized finite differences amount to directional derivatives. To get an idea of
the overall roughness, we simply take the square root of the sum of their squares: in that case we
make a measurement of the magnitude of the vector gradient, which I'll call roughness. Since we use
diff and thereby lose a point in the dimension in which it is applied, I simply trim the resulting
matrice to have the same size. Matlab’s own gradient function would have done a slightly better
job than I here, but this will do for now.

>>ah(3)=subplot(3,1,3);

>>dzdy=diff(zr, []1,1)/[1lat2(1)-1at2(2)]/1000;

>>dzdx=diff (zr, []1,2)/[1on1(2)-1on1(1)]1/1000;

>>imagesc(xr,yr([2 1]),sqrt(dzdy(l:end,1:end-1)."2+dzdx(1l:end-1,1:end)."2))
>>axis image xy; caxis([0 3]); colorbar

>>t1(3)=title('roughness (km/degree)');

12

horizontal (longitudinal) slopes (km/degree)

T T [P P e

~ 51.5 ' T
W

51 .
o

B 505 0
T 50

% 495§ 2

longitude (degrees)
verical (latitudinal) slopes (km/degree)
“‘3‘ 51 5 C T T : e T SR ST B
2

3 51

N

T 505 0
g 50

E 4955 2

2 3 4 9 6 7
longitude (degrees)
roughness (km/degree)

~ 51.5]

% i

o 51

o

S 505

4 50

=

T 495

longitude (degrees)

Figure 7: This figure is the result of the material in this section. It’s what you get from £8.m.

13

