
FRS 135 State of the Earth: Shifts and Cycles (in Spain)

Lab 02b: Campus GPS — II I10/08/2015

Due: 10/08/15 – upload your PDF to Blackboard by 1:30 pm Thursday.

Your csv file contains your observations and you have stripped the header and resaved it.
Now you use the command load to load the numeric variables into your workspace.

My own solutions would be in fjsimonsl02a.csv, so after typing load fjsimonsl02a.csv,
I will have the variable named fjsimonsl02a in my workspace. I could also use the functional
form of load by typing bla=load('fjsimonsl02a.csv') in which case I would now have the
variable bla in my workspace. Note that this option requires you to identify, by the straight-
up quotes, the filename as a string : a set of characters instead of a variable. Watch out: If
you don’t have the right number of columns (17), your file was not saved correctly. Turn it
into the right size as follows:if min(size(bla))==1; bla=reshape(bla(:),17,[])'; end

I prefer descriptive but short variable names. Of course you could have gone with the first
solution and renamed the variable by typing bla=fjsimonsl02a but then you’d have two
variables with the same information. Find that out by typing whos, and then you could get
rid of one by typing, for example, clear fjsimonsl02a.

Now you have the data you can do anything you want. The commands that speak for
themselves are help, lookfor, type, and of course plot, xlabel, ylabel, title and hist,
which we have demonstrated in class. Let’s say you wanted to make a histogram but forgot
how to: lookfor histogram would turn up hist, and help hist would tell you how to use
it. Then, type hist will give you read access to the source code if you want to dig in.

More subtle is how to address the entries in your matrix named bla. You might want to pick
out the fourth column, bla(:,4), or the third row, bla(3,:), or simply the last column,
whichever that is, bla(:,end). Remember the semicolon (;) is a screen output “silencer”.

You now might want to logically address all elements in the fourth through sixth columns for
all rows whose last column was the number five; this would be bla(bla(:,end)==5,4:6).
Or the last column for all those rows whose first column contains numbers greater than
twenty-four, bla(bla(:,1)>24,end). Type help relop for logical “relational” operators.
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Warm-Up Exercises

Now it’s your turn to do something interesting with your data, and with everyone’s data.
What are the mean and variance of the elevation on your third control point? That would
be melev=mean(bla(bla(:,2)==3,6)) and thereby you would have this mean computed and
assigned to variable melev; similarly, you might calculate velev=var(bla(bla(:,2)==3,6)).

What is the histogram of all the weather conditions in your survey? That would be the cate-
gorical hist(bla(:,15)), and you would annotate the figure with xlabel('met indices')

and ylabel('count'), title('weather conditions during my survey'). What is the
data drift with time? How is my precision compared to that of the others? Of the entire
class? Is my precision a function of the number of satellites? Is x more accurate than z?

Let’s pretend you have all elevations collected in a variable elv, and for the sake of the
argument, let me simulate some Gaussian random data in there, with standard deviation 1.2
and mean 65: elv=randn(49,1)*1.2+65. From this sample of 49 data, you expect the
mean(elv) and sqrt(var(elv)) or std(elv) to be close to 65 and 1.2, respectively. Check
for yourself, and note it will get better as the sample size increases. By executing hist(elv)

you’ll get the standard histogram, in counts, and with the default number of bins. Is this
close to being normally distributed? We could plot a normal curve on top of it by freezing
the image using hold on and then adding a Gaussian with the same mean and variance.

Let’s see. First we would define some kind of an x-axis for this problem, for example, the
linearly spaced vector x=linspace(mean(elv)-3*std(elv),mean(elv)+3*std(elv),100);
and then we’d calculate the values of the normal distribution at these points, taking care to
have the area under this curve be the same as the area under the histogram. See if you can
make sense of this: g=normpdf(x,mean(elv),std(elv))*length(elv)*range(elv)/10;

which we would plot right on top of the histogram by now writing plot(x,g), the 10 for the
default number of 10 bins in the histogram. Here is the bare-bones plot that results:
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This visual procedure of checking for normality is very sensitive to the number of obser-
vations and bins. Better use a quantile-quantile plot, which is built right into Matlab as
qqplot(elv). If the crosses fall on a line, your data are likely normally distributed.
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Assignment

Your job now is to prepare a short lab report where you (1) make and present an analysis
of your own GPS data and (2) compare your results with the data collected by the entire
class. Use the LATEX templates that we provided, and include at least three figures.

Since you are using the templates, it is quickest to include PDF (*.pdf) figures in your
document. Once you have a figure on the screen, type print -dpdf figurename and you’ll
see the file figurename.pdf appear in your working directory. Remember to crop the white-
space off it by using trim and clip in \includegraphics!

This needs to be done by all — One figure

The goal of the required exercise is to get an idea of the precision and the accuracy of your
GPS. First, distinguish both terms. Accuracy is how close to the truth your measurements
are on average. Precision is how distributed the measurements are about their average.
Take a look at the figure below. You’re shooting four times at a target. The average mark of
the accurate shooter is right on target. The marks of the precise shooter are tightly clustered
around their average. But of course the average of the shots may not be close to the truth.

Given how confusingly used these terms are in the (popular) literature, I prefer to use
the proper terms: bias (how close the measurements are to the truth, on average) and
variance (how tightly they cluster about their average). Other terms are systematic (bias)
and random error (variance). The ideal measurement technique yields low bias, and low
variance, and the combination of both (bias squared plus variance) is the mean-squared
error. Keeping that to a minimum is what you’re really trying.
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Re-mapping Control Points gives you an idea of the variance (the expected value of the
squared distance to their expected value, where the expectation itself is defined as that num-
ber with respect to which the expected squared distance of the points, itself, is a minimum!)
of your measurements, which is due to all sorts of factors: the weather being one of them.

Re-measuring the Control Line gives you an idea of the bias: you (think you) know the
truth if you have walked a straight line such as a curb. By plotting your measurements
against one another, determining the best-fit line, and comparing that to what you (think
you) know is a straight line: it’s not a watertight argument but you should be very sensitive
to biases in the measurement, at least over the course of your experiments.

Inspect the distribution and calculating the variance of your Control Points was covered
under the “Warm-Up Exercises”, but let’s see how the Control-Line procedure works.

Let me make some synthetic data like the ones that you’ll be collecting. Pretend the
following (x, y) positions are the truth: ten linearly spaced x positions between 0 and 100,
and ten corresponding y positions with an offset of 3 and a slope of 0.5, in other words: a
true straight line:

x=linspace(0,100,10);

y=3+0.5*x;

p1=plot(x,y,'o-');

title('true intercept 3 ; true slope 0.5')

Notice that I plot the (x, y) pairs as symbols connected by lines, and notice that I request
an output to the plot statetemnt, this variable p1 is a handle that I can manipulate later.

Now pretend you made measurements at these same locations, but there is additive noise in
both components. From your experiments at the Control Points, you might have been able to
conclude that the noise is normally distributed with variances σ2

x = 3.8 and σ2
y = 4.2. A small

bias in both components could take the form of a nonzero mean in those noise components,
µx = 3.3 and µy = 3.8. Generate a total of 12 experiments with those characteristics:

nx=random('norm',3.3,sqrt(3.8),[12 10]);

ny=random('norm',3.8,sqrt(4.2),[12 10]);

When trying to add these two noise matrices to the “true” locations, you have to grow the
arrays x and y to have the same dimensionas as nx and ny so that you can add them.

xm=repmat(x,12,1)+nx;

ym=repmat(y,12,1)+ny;

hold on

plot(xm,ym,'+')

xlabel('horizontal (x)')

ylabel('vertical (y)')

If we simply tried to find the best-fitting least-squares regression line through all of our
points, we would look for the straight line that is closest to all of the noisy measured points,
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in the sense that the sum of the squared distances of every point to the regression line
is minimized. In its simplest form we would measure the distance along the y direction only.
What this means is that we would conside the horizontal variable x to be the truth, and the
vertical variable y to be subject to noise. As you know (since you made up the data!) this
oversimplification ignores the noise in the horizontal variable.
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true intercept 3 ; true  slope 0.5

best−fit intercept 5.49

best−fit slope     0.49

Now, bear with me: the regression line is given by a bit of a formula that derives from
linear algebra. Later, we will redo it using a preprogrammed Matlab function. First, we
collect all of the measurements xm and ym into one big, concatenated column vector:

XM=xm(:);

YM=ym(:);

Then, we would make the sensitivity matrix that expresses the linear relation that we
suppose exists between the variables: XM and YM:

A=[ones(size(XM)) XM];

Finally, we would obtain the two coefficients, one intercept and one slope from the generalized
inverse applied to the data vector. Don’t worry about the details if this is opaque — yet.

m=inv(A'*A)*A'*YM;
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The first entry of the solution is the best-fitting intercept, the second the best-fitting slope.
We’ll add those results to the plot using a formatted string :

text(10,55,sprintf('best-fit intercept %3.2f',m(1)))

text(10,50,sprintf('best-fit slope %3.2f',m(2)))

And finally, we visualize the regression line by evaluating what the y values would be if we
requested them at any x points of our choice. We might as well take the original x vector
as the points where we evaluate the regression, and connect everything by a line. Of course
two points, e.g. the endpoints, would do, since Matlab, if you ask for a line plot, will just
connect them by a straight line.

ypred=m(1)+m(2)*x;

plot(x,ypred,'k-','linew',1.5)

Now you see that we’ve gotten the slope pretty right, but we’ve discovered some of the bias
in the y direction, as our intercept is off. In this example we just know the truth, and we
know the bias in y that we put in (it was the mean value of the noise in y, or µy = 3.8). Not
too bad; my intercept is 5.49 and it should be 3. The apparent bias in this example is 2.49.

At this point I am no longer pretending that I have the truth. Take the truth off the plot:

delete(p1)

All I have left is my data points and my regression line. For good measure, let’s use
Matlab’s refline to make sure it gives us the same result. Clear the plot and start over:
plot every point, use refline, and overlay our own best-fitting line. They should coincide.

clf

plot(XM,YM,'k+')

refline

hold on

plot(x,ypred,'bo')

Yup, they do. Matlab’s refline calls lsline calls polyfit calls qr calls etc... you would
never guess that it was as simple as the almost-one-liner that I just gave you. Moving on.

The fact that you have a best-fit line does not mean at all that my line is a good fit ! Ponder
that. It could be terrible! How good is the fit?

The first thing I should do is inspect the residuals. Those are the difference between the
measured y values and the predicted y values. How should they be distributed? We need
to make predicted y values for every one of the measured x values, not just at some small
convenient set for display purposes. In other words, we recompute predictions and subtract
the observations. And then we make an annotated histogram of those!

ypredm=m(1)+m(2)*xm;

resid=ypredm-ym;
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clf

hist(resid(:))

xlabel('residual (y-ypred)')

ylabel('count')

text(-5,28,sprintf('mean residual %3.2f',mean(resid(:))))

text(-5,25,sprintf(' var residual %3.2f',var(resid(:))))

Our histogram does look pretty normal (and elsewhere in this document and in the previous
lab you will find some easy ways to test for normality in a more formal manner). We have a
mean residual that is very close zero, which is another way of telling us that we have lost all
information about the possible bias (we no longer pretend we know the truth!), but we do
know something about the variance. In my experiment it is 4.32, and remember that I put
in the value σ2

y = 4.2. Not bad! (What we have learned about the variance of y, without
knowing the truth, is actually pretty close to the truth.)

−6 −4 −2 0 2 4 6 8
0

5

10

15

20

25

30

 var residual 4.32

mean residual 0.00

residual (y−ypred)

co
un

t

How good is our regression line? Well, it predicts the y values of an experiment where
we consider the x values as perfectly known to within a standard deviation of

√
4.32, which

we take as our precision. Compare this to the precision that you derive from your Control
Points, as it will be close. And if we had access to the truth (a much better measurement,
say), we could even say something about the accuracy, in the end. Now, a popular way
to asses the quality of a least-squares regression line fit is by calculating the correlation
coefficient.
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Once again, I’ll give you the relation to calculate this coefficient, and then we’ll verify using
Matlab’s canned function corrcoef, which has some bells and whistles. The correlation
coefficient is the normalized covariance between the variables. If it’s close to 1 the two
variables go up together, if it’s close to −1 they go in opposite directions, and if it is close
to 0 there is no correlation between the variables. Using Matlab’s cov and var we compute
the 2×2 matrix whose off-diagonal elements (the matrix is symmetric, so only one of the
matters) are the correlation coefficient:

RM=cov(XM,YM)/sqrt(var(XM))/sqrt(var(YM)); RM(2)

Now we’re at it, an alternative for the the slope of the regression line is a slight variation:

SM=cov(XM,YM)/var(XM); SM(2)

and the intercept is also quite simply computed from the result:

mean(YM)-mean(XM)*SM(2)

Compare this to m(1) and m(2)! It’s the same thing! Powerful stuff.

The correlation coefficient is positive at (in my example) 0.9914, so the linear correla-
tion between the variables is high. But how strong is strong, and how high is high? The
significance depends on the number of data. Intuitively, the bar on calling a correlation
strong should be higher and higher (closer to 1 or −1) the less data you have. With just
a few observations, the chances that they correlate by chance are quite high. With a lot of
observations, these chances go down, so even weak correlations can be significant.

Formalizing a significance test for correlation is hard, because you need to first model
the chances that an observed correlation coefficient occurs by chance in a sample of a certain
amount of data if the data in fact are not correlated. If you know those chances, and you
have a certain observed correlation coefficient, you can then rule out that it is as high as
it is completely fortuitously (when in fact the data are not correlated). Matlab’s corrcoef

has one such test built in, which only applies if the variables that you test for correlation
are normally distributed. In our case, they were! (We made them ourselves. For your field
experiments, you’ll see if the assumption of normality holds).

We’ll call the function with two outputs:

[R,P]=corrcoef(XM,YM); R(2)

and we get the same thing that we knew already, that the correlation coefficient is 0.9914
(in my experiment). And when we look at the second output,

P(2)

which is the calculated probability that a correlation coefficient as high as observed, or
even higher, occurs by random chance under the assumption that the variables are normally
distributed. In my case these chances were vanishingly small: the value of 0.9914 is deemed
significant.
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Never, ever calculate a correlation coefficient without doing and reporting the test for
significance. And never do the test for significance without knowing the distribution of
your data. (Yes, this means you will need to stay in school.) And only when the data
are normally distributed should you use Matlab’s corrcoef to conduct such a test: it only
applies in the easy case of normality; they simply did not take the time to derive and program
any other tests!

While normal distributions are pervasive in nature, lots of other distributions are also perva-
sive, and they might look nothing like the normal distribution. Examples are photon counts
in detector systems, radioactive decay processes, the energy of ocean waves, the frequency
of stock-market crashes, to name a few.
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And finally here you can use your imagination — Two more figures... some ideas

Let’s say you have an array variable that you call tims which has eleven entries, as in
tims=rand(11,1); which contains a uniformly distributed random set for the purposes
of this example. Let’s assume you have a variable that you call xlocs which has the eastings
of your GPS data set, as in xlocs=tims+rand(11,1)/2. As you can see both variables are
linearly correlated: one is just the sum of the other and some other random set that has one
quarter of the variance — for the purpose of this example. Type plot(tims,xlocs,’o’) and
you’ll see your data appear on the screen. In this example, you’d be studying the drift of your
eastings with respect to tims. Then xlabel('time (s)'), ylabel('easting (m)'). Let
Matlab plot a regression line on top of this: for this you simply type refline. Add some
grid lines by typing grid on and title('temporal drift of GPS eastings'). Print the
figure to a PDF file as print -dpdf lab2fig1 and see file lab2fig2.pdf appear.

Again, in your template, when you put into the editor the statements

\begin{figure}[h]\begin{center}

\includegraphics[width=0.55\textwidth]{lab2fig1}

\end{center}\end{figure}

and then run pdflatex as usual, you should see a figure like this here.

Now suppose these were your data, and you have collected the data for the rest of the class in
the variables (filled with random entries for this example, as in timsrest=rand(121,1),;)
and let’s assume everyone has done a better job than you, so their eastings might be some-
thing like xlocsrest=timsrest+rand(121,1)/10+0.25. These are also linearly correlated
but with much lower variance than yours, and with a slightly different slope. Plot those
data on top of yours using first hold on and making a different choice of symbol, e.g.
plot(timsrest,xlocsrest,'+'). Add a legend for the three things that you’ve just plot-
ted, legend('mine','my regression','theirs'). Here is the figure I get when I execute
each of the above commands in order.
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Figure 1: Temporal drift of GPS measurements:
my results compared to those of the class, with
a regression line for my results added. The drift
is approximately 1 m s−1, and this is of course
totally and wholly unrealistic given that this was
a made-up example using uniform random data.

Here is verbatim what I typed in my LATEX document to get the above result:

\begin{figure}[h]

\begin{center}

\includegraphics[width=0.75\textwidth]{lab2fig2}

\parbox{0.5\textwidth}{\caption{Temporal drift of GPS measurements: my

results compared to those of the class, with a regression line for my

results added. The drift is approximately 1~m $s^{-1}$, and this is

of course totally and wholly unrealistic given that this was a made-up

example using random data.}}

\end{center}

\end{figure}

I obviously only provided one caption so far, which is why LATEX starts with number 1. In
your document, you would have had a caption for every figure and you’d be up to 6 by now.

When you’re done, type hold off to release the overlay on your graph, or when you want
to start over, type clf to start afresh.
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Here is a final example where you might plot a scatterplot of elevation versus number of
sattelites, color-coded for weather. Once again, making it all up. The data are in the array
GPSdata and the third column might contain elevation and the ninth column the weather
code. I have 7 data with cloudy skies, let’s say that’s code 12, and 8 data with sunny skies,
pretend that is code 9. Let’s imagine sunny (mean 32, variance 4) beats cloudy (mean 31.5,
variance 9), thus var(GPSdata(GPSdata(:,9)==9,3)) GPSdata(:,3)=[randn(8,1)*2+32 ;

randn(7,1)*3+31.5]; will create such an array (so far only a third column). Now I add the
ninth column for the weather by typing GPSdata(:,9)=[repmat(9,8,1) ; repmat(12,7,1)];.

Is the variance what I think it is? Type var(GPSdata(GPSdata(:,9)==12,3)) for the
cloudy elevations (I got 8.4) and var(GPSdata(GPSdata(:,9)==9,3)) for the sunny ones
(I got 3.2). Similarly, calculate the means, mean(GPSdata(GPSdata(:,9)==12,3)) and
mean(GPSdata(GPSdata(:,9)==9,3)). For these small numbers and the huge difference
in variance but the small difference in means you’ll notice the variances are much easier to
distinguish than the means. But anyway, we’ve got our synthetic data set. No wait, we still
have to make up the number of satellites, let’s say that’s column six. Put some random
integers there for now, GPSdata(:,6)=randi(24,8+7,1);. Now we’re done simulating.

Make it all easier to digest by reassigning to sunnyel=GPSdata(GPSdata(:,9)==9,3) and
cloudyel=GPSdata(GPSdata(:,9)==12,3), and numsat=GPSdata(:,6), for example. The
plot below is the result of plot(sunnyel,numsat(GPSdata(:,9)==9),'ro'), and then type
hold on, plot(cloudyel,numsat(GPSdata(:,9)==12),'b+'). Is there a trend? Try typing
refline, legend('sunny','cloudy','sunny trend','cloudy trend') and discuss. Note
that refline gives you the best-fitting linear trend... but no information on whether this
trend is remotely good or significant. To interpret this, you’ll need to go back a few pages.
Anyway, here’s the figure... which you’d need to further label and annotate. Good luck!
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