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Geodynamics 
G456-556 

 
Lab #4: Airy Isostasy 

Introduction  
The study of plate tectonics usually emphasizes horizontal motions of plates, 

but vertical dynamics are intimately related to mantle motion, and we’re beginning to 
re-recognize their importance. Vertical motions have some very important 
consequences -subduction, mountains building, basins development, weather 
pattern alteration, erosion rate acceleration, and exposure of deep rocks, to name a 
few. In this problem set, you will explore the vertical dynamics of the lithosphere 
through the concept of isostasy.  

Some background on isostasy  
Isostasy is an equilibrium condition characterized by equal pressure within some 

fluid. In the case of plate tectonics, the fluid happens to be the mantle. (Beware! Do 
not confuse the word fluid here to mean that the mantle is a liquid – solid rock can be 
a fluid provided that it can flow in response to stresses. It’s just that this flow 
occurs over geologic time scales.) For the pressure in the mantle to be equal at a 
given depth, there must be an equal amount of overlying mass everywhere above that 
depth.  

Imagine that we take a particular depth within the mantle to call our compensation 
depth. We then define a series of vertical columns rising from that depth to the 
surface (of land or sea). If the mass of each of these columns is the same, then we 
have a state of isostatic equilibrium; any deviation from this will provoke an isostatic 
adjustment in the form of a vertical motion whose speed is determined by the 
viscosity of the mantle and the magnitude of the pressure difference within the 
mantle.  

For example, if one column is deficient in mass, then the mantle in that region is at 
lower than normal pressure, and this initiates flow in the mantle to fill in this low 
pressure area. More mantle material is thus added to the column, causing upward 
motion of the surface. If a column has too much mass, the mantle below is at a higher 
than normal pressure, so mantle material moves away from that region, causing the 
surface to drop in elevation. This concept of isostasy can be applied to a number of 
questions. For instance, we can figure out the thickness of oceanic crust as shown in 
the example below, by equating two lithospheric columns in isostatic equilibrium.  
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Example:	
  Calculating	
  the	
  thickness	
  of	
  the	
  oceanic	
  crust	
  

 
If we say that these two columns of rock in Figure 1 are in isostatic equilibrium, then they are 

neither rising nor subsiding, and the masses of these two columns must be equal. To determine the 
thickness of oceanic crust in this example, we therefore need to create an equation relating the 
masses of these two columns: 

(masscolumn1=masscolumn2) 

Σ(ρihi)column1=Σ(ρihi)column2 

and solve for the unknown we desire (i.e., hoc) 
For the two columns in figure 1, we get 

(1)   hcρc + hm1ρm1= hwρw + hocρoc+ hm2ρm2 

 
Now, in this case, we also know that the total height of each column above the compensation 
depth is the same, which give us 

(2)     hc + hm1 = hw + hoc + hm2 
 
 
solving equation (2) for hm2 and plugging into equation (1) we get 

hcρc + hm1ρm= hwρw + hocρoc+ (hc + hm1 - hw - hoc )ρm 

Simplifying and rearranging, we get an expression for the thickness of the oceanic crust 

hoc =    [hc(ρc -ρm) hm1 + hw(ρm - ρw)] /(ρoc- ρm) 

Plugging in realistic values for the different parameters:  
hc =30 km;    hw= 5 km;     ρc =2.83g/cm3;     ρm= 3.3 g/mc3;    ρw=1.0 g/cm3 

we find that hoc =7.4 km. 

In this example, we didn’t insert values until the equation was solved symbolically. Although 
you could plug in values sooner in the solution process, symbolically solving the system of 
equations allowed us to cancel terms and end up with a fairly simple expression for thicknesses 
and densities and easily recalculate crustal thicknesses.  
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These kinds of problems always boil down to the same thing: you draw two lithospheric columns 
and assume they are in isostatic equilibrium, which means that their masses are the same. If there 
is just one unknown in this equation, then you’re all set.  

 
If there are two unknowns, you need another equation. Sometimes, you can also assume that 

the heights of the columns are the same, and this gives you two equations. Combining your two 
equations allows you to solve the problem.  

	
  

On the continents, we have slightly different columns than in the oceans, shown in Fig. 2. On 
continents, continental lithosphere with the surface at sea level has a thickness of TA. while 
mountain ranges with an elevation h have “roots” of thickness r. 

 
Figure 2: Continental Columns in isostatic equilibrium 
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S u p p l ie s :   

- global data files of topography (map2.topo) and crustal thickness (map2.thick). 

- matlab function, readTopo.m, to load in the topography data file and plot a map. The script provides you 
with a cross hair which you move around to extract the lat, long, and elevation at a selected location. To 
run this function, type in        

 Elev=readTopo() 

-matlab function, getCrustThick.m, to load in the crustal thickness data file and retrieve the crustal 
thickness at the locations you selected for readTopo.  To run this function, type in  

getCrustThick (lat, long) %where you type in the lat and long of the point of interest 

 
A s s ig n m e n t :  

Determine the expected crustal thickness of the 5 following regions, and determine if they are in Airy 
isostatic equilibrium 

• Basin and Range  
• Tibetan Plateau 
• Norway 
• The Andes 
• Southern Africa 

If a region is not in equilibrium, discuss what could account for the imbalance. 

P r o c e d u r e :  
1) Following a similar method as the one used for oceanic lithosphere, determine the equation that 

solves for the thickness of the mountain root in terms of the mountain height and the density of 
crust and mantle.  

2) From this equation, determine another equation that solves for the crustal thickness in terms of the 
mountain height, and “typical” values for crustal thickness, TA; and density of the crust, ρc; and 
mantle, ρm. (Gee, isn’t this cool- you can now quickly guess the crustal thickness of any location on 
the earth!) 

3) Okay, now you have an equation that gives you the “expected” crustal thickness. Using the code 
provided (readtopo.m), select points within the 5 regions of interest and note the lat, long, and 
elevation. 

4) Write your own script to calculate the expected crustal thicknesses at these locations. Use the 
values of TA=30 km  ρm=3.3 g/cm3 and ρc=2.8 g/cm3 (watch your units!). This is a good opportunity to 
use “for” loops. 

5) Using the code provided (readCrustThick.m) retrieve the crustal thicknesses and compare to your 
expected crustal thicknesses. 

T o  h a n d  in :  

1- Your M-Flies 
2- A table of the five locations giving lat, long, elevation, calculated crustal thickness, actual crustal 

thickness 
3- For each of the locations where the calculated and actual crustal thicknesses are different, discuss 

plausible geodynamic reasons why. 
 


