The following is from a lab project in Earth 202: Modeling the Earth System, taught by Dave Bice and Jim Kasting at Penn
State University. Prior to this exercise, we spend a week talking about ocean circulation, the controls on seawater density,
and some of the details of deep currents based on exploring datasets from the IRI/LDEO data library
(http://iridl.Ideo.columbia.edu/). We also spend time going over the Younger Dryas and the D-O events and their
implications Then, the students build the model, using the recipe included here.

Thermohaline Circulation(THC) in the North Atlantic Ocean:
the 2-box model of Stommel (1961)

Equatorial Box

This is the temperature difference
between the two boxes — it varies
from 0to 1 and is set up so that it
tries to return to a value of 1, the
equilibrium temperature difference,
Teq. delT is decreased by mixing
between the two boxes, which is
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Highly Simplified STELLA Model of the THC

The time units here are scaled to what is called the
“diffusional timescale” of the system -- about 200 yrs
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delT heat exchange
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R is the ratio of the effect
of salinity over the effect R
of temperature on
seawater density
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Teq is the T difference the system
would evolve to if Q=0.

Teq

this is the flow between the boxes

This is the salinity difference
between the two boxes — it varies
from Oto 1 and is set up so that it
tries to return to a value of 1 (but
more slowly than the temp, as
controlled by delta). The delS is
decreased by mixing between the
two boxes (Q).

Salinity exchange

delta*(Seq-del_S)-Q*del_S

Seq Seqisthe S difference the system would
evolve to if Q=0; the return to this value
is slowed by delta, because salinity
diffuses more slowly than heat



Experiments with the Thermohaline Circulation Model

Construct a STELLA model of Stommel’s THC system following the design provided.
Be sure that your flows are biflows with the open arrows pointing towards the
reservoirs. Setthe model to run from 0 to 15 (time units are scaled to the
diffusional time scale of the system, which is thought to be about 200 years), with
DT =0.01, using the Runge-Kutta 2 method. Here is what your model output should
look like (note that I've got the delT and delS plotted on the same scale):
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[f you get results like this, then your model is ready to experiment with. If you don’t
get these results, go back and check the model construction carefully.

Notice that the system is not in steady state to begin with, but that it finds a steady
state after about 5 or 6 time units. The evolution of the system into the steady state
is complex — the salinity difference overshoots the final steady state value and the
temperature difference initially heads off in the wrong direction and then it also
overshoots the final steady state value. Q, which you can think of as representing
the combined Gulf Stream and NADW flows, initially starts off very strong and then
declines to 0 at two points before eventually reaching a steady value. Q here is
designed so that it cannot be less than 0 — it is a measure of the magnitude of flow
and not the direction of flow. Note that when Q=0, both delT and delS increase —
they will approach the Teq and Seq values. High values of Q mean strong mixing
between the polar and tropical portions of the ocean and this will tend to make their
temperatures and salinities more similar, thus making delT and delS be lower. A
high Q value also means strong transport of heat from the tropics to the polar
region.



Experiments

1. Varying initial reservoir values.

a) Change the delS initial value from 0.5 to 0. Before running the model, take note of
the steady state values of delS, delT, and Q from your first model run. Then, make a
prediction about how the reservoirs will begin to change at first and where they will
end up at the end of the run — will the system return to the same steady state? Run
the model and see what happens, then describe the results.

b) Now we will explore a wider range of initial values to better understand the
steady states of this system. Go to the Sensi Specs window, from the Run menu and
send both reservoirs over to the selected column. Make 11 runs, and have delS start
at 0 and end at 1 and delT go from 1 to 0; be sure to hit the Set button after you
define the starting and ending values. Then set up a graph to view the results —
make it a comparative scatter plot, with delS on the X axis and delT on the Y axis.
Make sure the Run Specs are set to run from 0 to 15 time units with a DT=0.01.
Then run the model and see what happens. You can watch the trajectory of each run
by following the dots — they move fast when the system is not in steady state, but
they become stationary when a steady state is achieved. So if there is one steady
state, all dots will converge on a single spot; if there are multiple steady states, then
you’ll see more than one convergence. These convergences, also known as
attractors, can be thought of as similar to topographic depressions — imagine a
topographic surface with some peaks and some depressions (see schematic
illustration below) — the depressions represent conditions where the two flows in
our model are both zero. If you toss a bunch of marbles onto this smooth surface,
they will tend to find their way to the depressions, and the initial starting point of
the marble determines which depression it ends up in.



Now, study the results of these model runs and find out how many steady states
there are for this system (you may want to modify your sensitivity specs a bit to
cover more of the space in the delS vs. delT plot) and then report the delT, delS
coordinates of the steady states.

Here is what they see:
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c) Characterize the steady states by looking at the magnitude of Q, the exchange flow
between the two oceanic boxes. High Q would mean a vigorous Gulf Stream - NADW



system, which would be associated with lots of heat transport from the equator to
the poles.

Experiments 2 and 3 to be done as homework, due next Friday.

2. Changes in temperature.

What will happen to this system if the climate warms? How can we modify the
system to represent a warmer climate? As you may know, the recent climate change
has been characterized by greater warming at high latitudes, which tends to reduce
the gradient from the poles to the equator. In our model, the temperature difference
between the polar and equatorial regions is represented by the delT reservoir. The
value or magnitude of delT is a function of two things — the density-driven mixing
that tends to even out the temperature difference (reducing delT) and the climate-
controlled temperature difference (Teq in our model), which is set to 1. If we
reduce Teq, that will tend to drive the system to a lower delT value.

So, set Teq equal to time and make it a graphical function of time. Make the upper
limit 1 and the lower limit 0.5 (anything lower would be too extreme). Set the time
axis to go from 0 to 30 so that we can make the change in Teq after the system has
gotten into a steady state (it would be hard to understand the effect of the change
during the adjustment to steady state). So, after about 8 time units, make Teq step
down to a lower value and then have it remain at that value for a brief period of time
and then return it to 1. There are two questions to answer here:

a) Working with the initial delT and delS settings of 0.5, how does the system
respond to different magnitudes and durations of the excursion of Teq? Does the
system always bounce back to the original steady state, or can it get knocked into
the other steady state? If it does get knocked into another steady state, is it one of
the same steady states that we found earlier, by just changing the initial values of
the reservoirs without tampering with Teq? In general, describe how this change
affects the magnitude of delS, delT, and Q. This will require some careful analysis of
the model parameters, but do your best to explain why the system behaves this way.

b) With the two reservoirs initially set to 0.5, the system would find one of two
steady states, and we’'ve been tampering with that steady state. Now, let’s do the
same kind of tampering with the other steady state. How does it react to the periods
of decreased Teq? Is this steady state more sensitive or less sensitive to Teq
changes than the other steady state?



3. Freshwater pulses.

Recall from lectures that the Younger Dryas is believed to have been triggered by a
change of state in the THC due to a pulse of freshwater added to the North Atlantic.
Cessi (1994) figured out that the pulse of water, in Stommel’s model would
represent a flux of 0.2 delS units for a period of between 3-5 time units. Find a way
to modify your model to simulate this freshwater pulse — you want to add to the
delS reservoir for a limited period of time, and you want to impose this on the
steady state condition that represents the warmer (high Q and low delT) of the two
steady states.

a) Show how you make this change to your model (make a sketch, or print out the
altered model), and then carry out the experiment. Does this pulse knock the
system into the colder of the two steady states? In other words, does it stay in that
other state even after the pulse of freshwater has ended? Again, delve into the inner
workings of the model to understand what is going on.

b) What is the minimum magnitude and duration of freshwater pulse that is needed
to knock the system into the other steady state?



