Break-out 14: Solutions You have a mixture of chloroform (CHCl₃) and acetone (CH₃COCH₃). Plot the Pressure of the mixture as a function of the mole fraction of CHCl₃. In order to guide you, first address the following questions. (a) Draw the structures of CHCl₃ and CH₃COCH₃. (b) What intermolecular interactions occur between CHCl₃ and CHCl₃? What intermolecular interactions occur between CH₃COCH₃ and CH₃COCH₃? CHCl₃···· CHCl₃: dipole-dipole CH₃COCH₃···· CH₃COCH₃: dipole-dipole, dipole-induced dipole (c) What interactions occur between and CHCl₃ and CH₃COCH₃? Do you think these interactions are stronger than the interactions between CHCl₃ - CHCl₃ and CH₃COCH₃ -CH₃COCH₃? In addition to dipole-dipole interactions, now you can have H-bonding. These additional interactions should make the interactions between CHCl₃ and CH₃COCH₃ stronger than the self-self interactions. Note, normally H-bonds require that the H be bonded to an electronegative atom. C is not more electronegative. electronegative than H, but the chlorides are extremely electron withdrawing (think of the inductive effect), and this helps to activate the C-H bond for H-bonding. (d) Plot P_{mix} , P_{CHCl_3} and $P_{CH_3OCH_3}$ as a function of the mole fraction of CHCl₃. In what region of the graph does P_{CHCL} obey Raoult's Law? Henry's Law? Because the intermolecular interactions in the mixture are stronger than in the individual solutions, molecules will be *less likely* to escape into the gas phase in the mixture.