Calculating mineral equilibria back

In the application of equilibrium thermodynamics to the calculation of phase diagrams, there
are two approaches that can be followed: one based on the minimisation of Gibbs energy, the
other being a derivative equivalent based on the solution of sets of non-linear equations. The
main non-linear equations involved are the “equilibrium relationships”: the relationships for
balanced chemical reactions between the end-members of phases that are in equilibrium with

each other:
0=AG°+RTInK (1)

In this, AG” is the Gibbs energy of the reaction between the pure end-members in the same
structure as the phases in which they occur, K is the equilibrium constant, in terms of the
activities of the end-members in their phases, T is temperature, and R is the gas constant.

THERMOCALC follows this non-linear equation approach. Part of the reason for this was
that, at the point when this facility was added to THERMOCALC in the late '80’s, THERMOCALC
aready was using a multi-equilibrium-relationship approach to geothermometry/barometry (the
so-called average PT approach). Also it seemed to be the easiest way to draw, for example,
PT projections.

The problem of calculating mineral equilibria can be thought of in terms of the number
equations (constraints) involved and the number of unknowns being calculated. Average PT
and phase diagram calculations may be contrasted, with the thing they have in common that
each involves an independent set of reactions between the end-members of the phases involved
in the equilibrium:

average PT The independent set of reactions involves the end-members in the minerals of
the mineral assemblage that are assumed to have been in equilibrium with each other,
and that are also present in the thermodynamic dataset (and that one can write the a-z
relationships for). See Powell & Holland (1988, 1994) for the logic relating to independent
sets of reactions. If there are n reactions in the independent set, then there are n (inde-
pendent) equilibrium relationships. Given that the mineral compositions are known (eg
analysed by elctron microprobe), then the activities are also known, so there n equations
in the number of unknowns that are deemed to characterise the conditions of metamor-
phism. For example, the metamorphic fluid is reasonably assumed to be specified (eg as
pure HyO), then there are two variables, P and T. Average PT is the weighted least
squares process of calculating an optimal PT from the n equilibrium relationships. Given
that such calculations are always over-determined, with more constraints than unknowns,
a statistical procedure should be involved in calculating the best values of the unknowns.
Average PT involves finding the PT that involves the minimum displacement of the PT
lines representing the equilibrium relationships, accounting for the uncertainties on the
activities and thermodynamic data (see Powell & Holland, 1988, 1994).

phase diagram calculations The independent set of reactions involves the end-members in
the minerals of the equilibrium being calculated. In contrast to the average PT case, the
system of equations formed by the equilibrium relationships is either exactly determined
(ie all the unknowns can be calculated), or is under-determined, requiring that one or
more variables need to be specified, depending on the variance of the system. For an n
component model system with p phases, the well-known expression for the variance is



n—p-+ 2. Whereas for pseudosections the non-linear equations are augmented by compo-
sition ones, for P—T projections and compatibility diagrams just equilibrium relationships
are involved. Consider first the latter, simpler case. If phase k involves e, end-members,
then it involves e, — 1 composition variables. For the p phases in the equilibrium, there
will be >7_, ex = s end-members of phases, and Y>¥_;(ex — 1) = s — p composition vari-
ables. The number of reactions between the end-members that make up an independent
set is the number of end-members minus the number of components, s — n (Powell &
Holland, 1988). Given that there is a non-linear equation for each reaction in the in-
dependent set, these relationships indicate how many unknowns can be solved for, and
therefore how many must be set, because the s — n equations can only be solved for
s —n unknowns. The number of things that have to be set in order for an equilibrium
to be calculated can be represented in terms of degrees of freedom, equal to the number
of unknowns, (s — p) + 2, minus the number of equations, s — n, giving n — p + 2. So
the number of degrees of freedom is just the variance. Setting unknowns may involve
setting P and/or T, or setting compositional variables, as would be done, for example, in
calculating composition isopleths on a P-T" diagram. Therefore, by variance, v:

v = 0. For an invariant equilibrium, a point on a P-T" diagram, all the unknowns can be
solved for. With no composition variables set, the equilibrium involves n + 2 phases;
the P-T of the point, and the compositions of all the phases in the equilibrium, can
be solved for. For ¢ composition variables set, the equilibrium involves n + 2 — ¢
phases. For example, a divariant assemblage involving n phases, with 2 composi-
tion variables set, corresponding to the intersection of two isopleths, is (effectively)
invariant, and the P-T" and remaining composition variables of the equilibrium can
be solved for.

v = 1. For a univariant equilibrium, a line on a P-T' diagram, if one of the unknowns is
set (i.e. one of P, T and the composition variables), then the remaining unknowns
can be solved for. With no composition variables set, the equilibrium involves n + 1
phases, and, given, say, P, the T and the compositions of all of the phases can
be solved for. For ¢ composition variables set, the equilibrium involves n +1 — ¢
phases. For example, a divariant assemblage involving n phases with 1 composition
variable set, is a line on a P-T diagram (an isopleth), the equilibrium is (effectively)
univariant and, given, say, P, the T" and the remaining compositions of the phases
can be solved for.

v = v. For a v-variant equilibrium, if v of the unknowns are set (i.e. v of P, T" and
the composition variables), then the remaining unknowns can be solved for. If there
are no composition variables set, then v < 2, or the equations cannot be solved.
With no composition variables set, the equilibrium involves n 4+ 2 — v phases; for ¢
composition variables set, the equilibrium involves n + 2 — v — ¢ phases.

The calculation of P-T" and T—x/P-X pseudosections with the non-linear equation ap-
proach involves augmenting the non-linear equations formed by the set of equilibrium
relationships with a set of equations derived from mass balance constraints. For the spec-
ified bulk composition that is being used for the pseudosection, these additional equations
relate the mole proportion of each component in the bulk composition with the sum of the
calculated mineral compositions multiplied by their modal proportions. In other words,
the bulk composition must be able to be made up of an assemblage of the phases of



interest. Of course the phases in the assemblage must each have non-negative modal
proportions.

For the n-component system considered above, there will be a mass balance equation for
each component, giving n equations additional to the equilibrium relationships involved.
There are also p additional variables, the modes of the phases. Then the total number of
equations is s — n + n, i.e. s equations, in s — p+ p + 2, i.e. s+ 2 unknowns. So, if two
things are specified, the number of equations equals the number of unknowns regardless
of the number of phases involved. This means that the compositions of the minerals and
their modes can be calculated for an equilibrium of any variance at given PT', once a bulk
composition is specified (see also Spear, 1986). Alternatively if two modes are specified,
the compositions of the minerals, the remaining modes and the PT can be calculated.
Further, if the modes are specified to be zero, then the PT' corresponds to a point where 4
boundary lines come together on a pseudosection (for the variance of the highest variance
field at the field being greater than 1).
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