The National Numeracy Network

A Better Way to Teach Algebra: Spreadsheets and Modeling

Eric Gaze Bowdoin College
National Numeracy Network
Macaulay Honors College Manhattan, NY

October 13, 2012

Spreadsheets and Modeling Timeline

- 1996 Berea College
- Modeling with Computers (Introduction to Excel)
- Beefed it up with math content: "pathway" into math
- Colleagues turned it into pre-calc: "black box" devoid of math
- 2010 Oberlin Program Review
- Oberlin Modeling Initiative (OMnI)
- Modeling across the curriculum using Stella, NetLogo, NOVA, Excel
- No math pre-requisites: "pathway" into mathematics
- Mathematicians Opposed: "black box" devoid of math
- 2005-12 Numeracy: Communicating with Numbers textbook project with Pearson
- Spreadsheets and Ratios are the focus

Spreadsheets and QR Timeline

- March 19, 2012 Bay Path College Phone-call
- Create new curriculum based on spreadsheets and business math
- Hire tenure track QR/Math faculty
- March 19, 2012 Article review
- Numeracy article on spreadsheets and business math
- From Liber Abbaci to new paradigm in math curriculum
- The Man of Number's, Fibonacci's Arithmetic Revolution by Devlin
- March 23, 2012 ICTCM keynote by Conrad Wolfram
- Computer Based Math .org
- Throw out K-12 math curriculum and create new curriculum based on computers.

The National Numeracy Network

Quantitative Reasoning (QR)

"Quantitatively literate citizens need to know more than formulas and equations. They need a predisposition to look at the world through mathematical eyes, to see the benefits (and risks) of thinking quantitatively about commonplace issues, and to approach complex problems with confidence in the value of careful reasoning. Quantitative literacy empowers people by giving them tools to think for themselves, to ask intelligent questions of experts, and to confront authority confidently. These are skills required to thrive in the modern world."
-Mathematics and Democracy 2001

In short, how do we create a mathematics curriculum which teaches our students how to THINK?

Is Algebra Necessary?

- Andrew hacker Professor Emeritus CUNY New York Times July 29, 2012
"A typical American school day finds some six million high school students and two million college freshman struggling with algebra."
"I'm not talking about quantitative skills, critical for informed citizenship and personal finance, but a very different ballgame."
"What is needed is not textbook formulas but greater understanding of where various numbers come from and what they actually convey."

2001 Cohort 9th Graders

This is not a pipeline... it is a trickle. 60% of STEM workforce is 45 and older.

How Much Math Do We Really Need?

- Professor Emeritus U. Ill. Chicago

Washington Post 10/22/2010
"Unlike literature, history, politics and music, math has little relevance to everyday life."
"All the math one needs in real life can be learned in early years without much fuss."
"Most adults have no contact with math at work, nor do they curl up with an algebra book for relaxation."

The National Numeracy Network

Algebra as Business Math

"Few in business today make use of the mathematics they learned in school.
Spreadsheets have entirely different requirements."
"Mathematical reasoning in workplaces differs markedly from the algorithms taught in school."
"Make no mistake; the revolution in business math created by the spreadsheet is conceptual as well as physical. It changes the way people in business think about and approach problems as well as the way they work through results. It enables them to quantify a whole new range of problems."

Problem Solving vs. Modeling

-Modeling for Insight
Powell and Batt

- Well Structured Problems
- Objective Clear
- Assumptions Obvious
- Data available
- One right answer
- Examples:
- Solve $2 x-5 / x=12$ for x.
- Balance the books.
- Do your taxes.
- Seriously, do your taxes!
- Ill Structured Problems
- Objectives, Assumptions, Data ambiguous
- Examples
- Should the Red Cross pay for blood donations?
- Should we tax soda?
- How much should an advertiser allocate to creative over delivery of ad?
- Should spreadsheets be taught K-12?
- Ill Structured Problems are Explored
- Make assumptions
- Formulate Hypotheses
- Generate Insights (don't "solve!")
- Modeling Process
- Frame the Problem
- Diagram the Problem

Influence Diagrams (relationships between variables)

- Build a Model

Spreadsheet Engineering/ Parametrization
Sensitivity/ Strategy Analysis

- Generate Insights

Iterate!

N Ways to Apply Algebra with the New York Times

-Patrick Honner

September 26, 2012
Modeling Process

- Amortizatio
- Buy versu
- Make Ass "solve!")
- Evaluating (
- "Use data rank schor
- Calculating
- "Create sc
- Metro Card Math
- Unlimited card or ride by ride?
- Olympic Algebra
- "Compare and contrast average speeds of athletes over time, across events, and by gender."
- Stock Portfolios
- Compound interest formula, exponential growth, and compare different rates of return.

Building Blocks

How many blocks will there be in the $\mathrm{n}^{\text {th }}$ building?

Building	Number of Blocks			
\mathbf{n}	Recursion	$\mathbf{1 + 3 (n - 1)}$	3n-2	
$\mathbf{1}$	1	1	1	
$\mathbf{2}$	4	4	4	
$\mathbf{3}$	7	7	7	
$\mathbf{4}$	10	10	10	
5	13	13	13	

Building Number	Number of Blocks		
n	Recursion	$1+3(\mathrm{n}-1)$	3n-2
1	1 1	$=1+3 *(A 3-1)$	=3*A3-2
2	$=B 3+3$	$=1+3 *(A 4-1)$	=3*A4-2
3	= $\mathrm{B} 4+3$	$=1+3 *(A 5-1)$	=3*A5-2
4	= $\mathrm{B} 5+3$	$=1+3 *(A 6-1)$	=3*A6-2
5	=86+3	$=1+3 *(A 7-1)$	=3*A7-2

Probability and Coin Flips

Ratio and Proportion

Graphing in Real Time

Modeling Car Cost

Modeling Car Cost

Focus Prius
Cost
$\$ 20,000.00$ \$33,000.00

MPG Hway	28	45	3.571	2.222
MPG City	22	37	4.545	2.703
		Gallons Used		
Miles Hway	8,000		285.71	177.78
Miles City	12,000		545.45	324.32
Price per Gallon	\$ 3.86	Total Gallons	831.17	502.10
		Cost:	\$ 3,208.31	,938.11

Gas Savings per year: \$ 1,270.20
Extra Cost: \$13,000.00
Years to recoup: $\quad \mathbf{1 0 . 2 3}$ years

Is Algebra Necessary?

Yes! And we can use spreadsheets and modeling to help teach students why.

Tornado Sensitivity Chart

