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Why scoring matrices?

When we score an alignment we need to generate a score for every possible alignment column we 
may see. The easiest way to do this is with a simple match-mismatch scoring system. Such a 
system gives the same score to all mismatches, regardless of which amino acids are involved. For 
example, in this alignment C-A and G-A would get the same score.
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The match-mismatch system has the virtue of being simple. However for most real applications we 
use more complicated systems involving scoring matrices. A scoring matrix specifies the score to 
be given for every possible combination of amino acids (or nucleotides).

Fig. 1. Part of the PAM250 protein scoring matrix (showing 8 of 20 amino acids).
A R N D C Q E G

A 2 -2 0 0 -2 0 0 1

R -2 6 0 -1 -4 1 -1 -3

N 0 0 2 2 -4 1 1 0

D 0 -1 2 4 -5 2 3 1

C -2 -4 -4 -5 12 -5 -5 -3

Q 0 1 1 2 -5 4 2 -1

E 0 -1 1 3 -5 2 4 0

G 1 -3 0 1 -3 -1 0 5

The scoring matrix approach is more complicated, but is worth using because it allows us to make 
substantially better alignments. Why is this?

The goal of making an alignment is to identify which amino-acids (or nucleotides) are homologous 
with each other. Scoring matrices are useful because certain substitutions are more likely than 
others. In proteins some amino acids are more similar to each other chemically (e.g. alanine and 
glycine which both have non-polar side chains). For this reason they are more likely to substitute 
for each other than amino acids with different properties (e.g. alanine and cysteine, an amino acid 
with a polar side chain). This difference is the result of natural selection. Because alanine and 
glycine are similar chemically, they can play relatively similar roles in a protein. Thus when one 
substitutes for the other, this will have a less deleterious effect on the protein's three dimensional 
structure and function. On the other hand when a very different amino acid substitutes, such as 
cysteine for alanine, this can have a large negative impact on protein function. Substitutions with a 
large negative impact tend to be selected against, and as a result, such substitutions are less 
common in evolution.

Having information about which amino acids are more or less likely to substitute for each other is 
useful in constructing an alignment because it helps us identify which residues are homologous. 
Take the amino acids mentioned above as an example. If we are looking at an alignment and we 
see an alanine and a cysteine paired, their relative lack of similarity makes us like the hypothesis 
of homology a little bit less than if we saw an alanine and a glycine paired. The score we give the 
alignment corresponds to how attractive the hypothesis of homology is given the data. So when 
we see an alanine and a cysteine, we should give this a more negative score than if we see an 
alanine and glycine. Scoring matrices are designed to reflect this principle.

Making scoring matrices



It would be nice if we could construct scoring matrices from first principles, based on our 
knowledge of the chemistry of different amino acids. Unfortunately it turns out that our knowledge 
of amino acid and protein chemistry is insufficient to do this. As a result, all practical amino acid 
scoring matrices are empirical. That means that they are constructed based on the pattern of 
substitutions we see in known homologous sequences. The earliest matrices of this type were 
made by Margaret Dayhoff, one of the grandparents of molecular evolution. In this exercise we will 
construct this type of a matrix, also known as a PAM matrix.

In the description to follow we'll use the nomenclature of Jones and Pevsner (2004). The process of 
making a scoring matrix begins with a set of trusted alignments. These come from closely related 
proteins which differ by about 1% from each other. Being this closely related, it is possible to align 
them by hand or with a match-mismatch system and to be confident that they are correct. Then in 
these aligned sequences we can count the number of times different amino acids replace each 
other. For example let f i , j  represent the frequency at which we see amino acids i and j 
aligned with each other in our alignments. (That is the count of times they are aligned divided by 
the total number of alignment columns). If f i and f  j  are the frequency of amino acids i 
and j in the sequences, then we can define the entry in the PAM1 matrix for amino acids i and j to 
be the following:

i , j =log
f i , j 

f i ∗ f  j 
/

Here, λ is a scaling constant which is included for computational convenience. And the expression
f i∗ f  j  represents the frequency that amino acids i and j would be expected to align by 

chance. You can think of i , j  as a log odds. It is the log odds of homology given that we 
observe a particular alignment column. f i , j  Is the probability of seeing i and j aligned in 
truly homologous alignments, and f i∗ f  j  is the probability of seeing them aligned in non-
homologous alignments.

This formula tells us how to make a PAM1 matrix. This matrix is suitable for aligning sequences 
which are very similar to each other. However it turns out that for more distantly related 
sequences the relative proportions of different kinds of substitutions change. This means that to 
align more distantly related sequences we need to use different matrices. Such matrices (such as 
the PAM250 matrix shown above) are constructed in the following way. Let us define g i , j  as 
follows:

g i , j =
f i , j 
f i 

We can look at this as telling us the probability that amino acid i mutates to amino acid j in the 
amount of time that separates our trusted alignments (one PAM unit). If we matrix multiply g 
against itself n times, then the i,j entry of the resulting matrix will tell us the probability of i 
mutating to j in n PAM units. An entry in the PAM n matrix would then be the following:

i , j =log
g i , j
n

f  j 
/

To make the PAM250 matrix above, g was multiplied against itself 250 times. The result is a 
scoring matrix which is suitable for aligning protein sequences which are highly diverged from 
each other.
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