

Scientists observe & measure all the factors that are known to influence Earth's climate

Scientists apply that knowledge to a scaled-down, computer simulation of the planet: a global climate model

Modelers represent Earth's surface and atmosphere as a virtual world made up of interacting, three-dimensional boxes.

Mathematical equations that represent the physical characteristics and processes are entered for each box

$$\begin{split} &\frac{\partial u}{\partial t} = \eta v - \frac{\partial \Phi}{\partial x} - c_p \theta \frac{\partial \pi}{\partial x} - z \frac{\partial u}{\partial \sigma} - \frac{\partial \left(\frac{u^2 + v^2}{2}\right)}{\partial x} \\ &\frac{\partial v}{\partial t} = -\eta \frac{u}{v} - \frac{\partial \Phi}{\partial y} - c_p \theta \frac{\partial \pi}{\partial y} - z \frac{\partial v}{\partial \sigma} - \frac{\partial \left(\frac{u^2 + v^2}{2}\right)}{\partial y} \\ &\frac{\delta T}{\partial t} = \frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} \\ &\frac{\delta W}{\partial t} = u \frac{\partial W}{\partial x} + v \frac{\partial W}{\partial y} + w \frac{\partial W}{\partial z} \\ &\frac{\partial}{\partial t} \frac{\partial p}{\partial \sigma} = u \frac{\partial}{\partial x} x \frac{\partial p}{\partial \sigma} + v \frac{\partial}{\partial y} y \frac{\partial p}{\partial \sigma} + w \frac{\partial}{\partial z} z \frac{\partial p}{\partial \sigma} \end{split}$$

Equations are converted to computer code and climate variables are set

```
if (diagts .and. eots) then
do 1500 m=1,nt
  do 1490 k=1,km
    fx = cst(j)*dyt(j)*dzt(k)/(c2dtts*dtxcel(k))
    do 1480 i=2,imtm1
      boxfx
                      = fx*dxt(i)*fm(i,k,jc)
                      = (ta(i,k,m)-t(i,k,jc,nm,m))*boxfx
      sddt
                      = (ta(i,k,m)**2-t(i,k,jc,nm,m)**2)
      svar
                        *boxfx
                      = 0
      termbt(k,1,m,n) = termbt(k,1,m,n) + sddt
      tvar(k,m,n)
                      = tvar(k,m,n)
            = nhreg*(mskvr(k)-1) + mskhr(i,j)
      if (n .gt. 0 .and. mskhr(i,j) .gt. 0) then
        termbt(k,1,m,n) = termbt(k,1,m,n) + sddt
        tvar(k,m,n)
                        = tvar(k,m,n)
                                          + svar
```


A supercomputer solves all the equations, passing results to neighboring boxes and calculating the next set of initial conditions

Models are tested and refined by simulating past climate then checking how well the results match observations

Models that successfully approximate past climate are considered valid for modeling future scenarios

Climate models project temperature increases for various carbon dioxide emission scenarios

Studies suggest that a further increase of only 2°F would lead to severe, widespread, and irreversible impacts on Earth's environment. 1,2,3

IPCC models successfully simulated climate conditions from 1900 to 2000.

Research groups around the world have developed a range of respected climate models

Modeling groups also work together, averaging results from their models with other models that used the same initial conditions.

These multi-model results are called "ensembles."

We can use climate models to link effects to their causes

Models predict how global average temperatures would have changed due to natural forces only

IPCC, 2007, SPM

Models attribute global warming mainly to human origins

IPCC, 2007, SPM

The pattern holds true on every inhabited continent

- Model predictions for natural & human forcings
- Model predictions for natural forcings
- Observations relative to 1901-1950 average