Start of Infection

To Inoculate or Not to Inoculate—That is the Game

0. Model Description

Inoculation Game: an Introduction

In the original inoculation game, each player is a node on a
connected graph of #n people. Each player chooses a strategy,
either inoculating against an infection or not inoculating. Then, a
single player is randomly chosen and infected. The infection
spreads between uninoculated people who are connected, but
does not pass through those who are inoculated. If an inoculated
player is chosen to be randomly infected, the infection does not
spread. For a node v, the attack component is all the nodes
capable of infecting v.

Players are assigned a cost according to what decision they
and the other players have made. The cost function for a node v is

C if inoculated
Cost(v) = if uninoculated.

where C is the cost of choosing to inoculate, L is the cost of
infection, and £ is the size of the attack component of ».

The Modified Game—Inoculation Succeeds with a
Probability

In reality, inoculations do not always succeed. As a result, in
our modified version of the game, a new parameter is added: the
probability p that an inoculation succeeds. Now, each player that
decides to inoculate is successfully inoculated with probability p,
and is left uninoculated otherwise. The spread of the inoculation
now depends on which node is initially infected and on which
nodes succeed or fail to inoculate.

Player costs are changed accordingly. Uninoculated node
costs are now based on the expected size of the attack
component. Inoculated players still pay the cost C of inoculating,
but in the (1 - p) chance that the inoculation fails, they are treated

as uninoculated players and additionally pay the cost described
above.
Original Game Modified Game (p=0.6)
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Comparing the spread of an infection in the two games (the numbers in
the nodes denote the probability of getting infected)
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Terminology

Best response dynamics is a process in which subsequent
players are given the chance to change strategies, if doing so will
lower the player's cost. A Nash equilibrium is a configuration of
strategies in which no player will change strategies under best
response. There may exist multiple Nashes, even for the same C
and p values. An optimal solution (OPT) is a configuration of
strategies that minimizes the social cost, the sum of the costs of
the players. The Price of Anarchy (PoA) is the ratio of the largest
social cost under any Nash over the social cost under an optimal
solution.

1. When is this model nice to work with?

Players in an attack component share the same cost
because if any single member gets infected, the others do as well.
In complete graphs (graphs in which every pair of distinct vertices
is connected by a unique edge), we find our model friendly to
work with. Because nodes in an attack component all share the
same cost, all uninoculated nodes have the cost function L(n -
mp)/n where m is the number of players inoculated and all
inoculated nodes have the cost function C+L(1 - p)(n + p - pm)/n.

Given values of C, p, and n, we can calculate the number of
inoculated nodes in the Nash and the number in the OPT.
Furthermore, the number of inoculated nodes in the Nash never
exceeds the number in the OPT. We demonstrate these below.
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For the complete graph of 3 nodes, the number inoculating under Nash and

OPT for 0 < p < 1/2 as a function of C.
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We also found that the PoA is maximized when C = p. We
would like to investigate whether this is true for general complete
graphs.

As in complete graphs, all inoculated nodes have the same
cost and all uninoculated nodes have the same cost in cycle
graphs with evenly spaced inoculations. Such cycle graphs have
given us insight on proving the existence of Nash on cycle graphs
for any C and p values. So far we have only proven the existence
of Nash equilibria on complete graphs.

2. When is this model difficult to work with?

In the original model, [1] has shown using a potential
function that a Nash always exists. However, best response does
not always terminate in the modified game, so there is no such
potential function based solely on best response.
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A case where best response reaches symmetrical states I and I11;
repeating this pattern will return to state I (C=0.291666, p=0.5).

At the moment, the algorithm we have for calculating the
expected size of a player’s attack component has complexity
O(2™). As a result, it is difficult to analyze Nashes and OPT in
general graphs.

3. General Graph Results

* If some player a inoculates as a result of best response
dynamics, then the social cost decreases by at least as much as a’s
individual cost decreases.

* When C> p, the only Nash is for nobody to inoculate.

* Let E,,, be the smallest possible attack component size of any
node in the graph when all of the nodes choose to inoculate. If
C<pE,; /n, then the only Nash is for everybody to inoculate.
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