Unit 5. Emergent approaches

Reading assignments

Date	Reading	Due
Tuesday, Apr. 5	Walker & Salt I: pages 1-52 (chs. 1 & 2)	Reading reaction
Thursday, Apr. 7	Walker & Salt II: pages 53-95 (chs. 3 & 4)	Reading reaction
Tuesday, Apr. 12	Walker & Salt III: pages 111-154 (chs. 5 & 6) and Nheta (handout)	Reading reaction and paper outline
Thursday, Apr. 14	Shirky I: pages 1-39	Reading reaction
Tuesday, April 19	Shirky II: pages 39-54 & 260-292	Reading reaction and paper 1 st draft

Note that your **paper final draft** is **due 28 April**; on the same day, you will be making a **short (3-5 minute) presentation** to the class.

Learning objectives

- 1. Be familiar with the application of resilience ideas to sustainability (Walker & Salt).
 - a) Define resilience.
 - b) Describe some of the pros and cons of the optimization approach.
 - c) Explain what is meant by *linearity* in the context of resilience science.
 - d) Describe the paradox of efficiency and optimization.
 - e) Give examples of key slow variables and sudden disturbances in the Everglades and in the GBC (Goulburn-Broken Catchment).
 - f) Describe factors that make behavior of complex adaptive systems hard to predict.
 - g) Explain differences between the notions steady state vs equilibrium.
 - h) Explain the positive feedback processes associated with sediment phosphorous, lake water phosphorus, and eutrophication in the hypothetical lake model.
 - i) Define hysteresis in the context of resilience science.
 - j) Explain the difference between ecological resilience and engineering resilience.
 - k) Explain the difference between *functional diversity* and *response diversity*.
 - 1) Reproduce the iconic sketch of the adaptive cycle (page 81) and explain how its components are related to the simplified representation (page 82).
 - m) Describe some dangerous characteristics of the late-K phase.
 - n) Explain why Walker and Salt advocate a graceful passage through the back loop.
 - o) Define *panarchical* in the context of resilience science.
 - p) Describe which parts of an adaptive cycle are likely to be incremental and predictable, and which are not.
 - q) Define adaptability (or adaptive capacity) as it is used by Walker and Salt.
 - r) Describe pros and cons of *feedback tightness* and *modularity* in the context of resilience science

- 2. Be familiar with emergent properties of new social tools (Shirky)
 - a) Describe general characteristics of Raymond's plausible promise, and how Evan Guttman's message qualified as one.
 - b) Describe the gap that lies at the heart of Shirky's institutional dilemma.
 - c) Describe how Coase's model ties together the concepts of transaction costs, markets, and the value of firms or other hierarchical organizations.
 - d) Explain what is meant in saying an activity lies below a Coasean floor.
 - e) Explain how user-generated labeling (e.g., Flikr) reduces transactional costs.
 - f) Describe how lowered transaction costs make possible projects that were previously unavailable (in a Coasean way); divide your response into the categories of *sharing*, *cooperation*, and *collective action*.
 - g) Describe social dilemmas that lead to failure of groups, according to Shirky.
 - h) Describe two ways societies have generally dealt with abuse of the Commons.
 - i) Describe two essential characteristics of the Watts/Strogatz Small World network.
 - j) Describe Shirky's paradox of groups.
- 3. Be familiar with emergent properties of new social tools (Shirky)
 - a) Interpret given power law distribution functions.
 - b) Carry out power law distribution calculations.