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—ault surface stresses

Stresses (Pa)x 107

* |nteraction of
opposing sides of a
ault causes stress

eterogeneilty:  LStion alon the fult (L)

Location along the fault

Location normal to the

How does the surface Sagy and Brodsky (2009)
shape control shear

tractions and
displacement?

W

2. Can we predict wear
processes from
surface geometry?
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—ault surface characterization

How does the surface shape control
shear tractions and displacement?




Fault roughness

« Power spectral density: pk) = Ck”
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Duct tape analysis
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Slickenlines from curvature

» Curvature defined by
two principal curvatures

Bergbauer and
Pollard (2003)
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Slickenlines from curvature

Kirkpatrick
and
Brodsky,
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Slickenlines from curvature
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 Observation: Slickenlines orientations do not

vary significantly over fault surfaces




-ault cores JE—————
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Mapping fault core thickness

* Rectified
images of the
fault in the
displacement
direction from
AQisoft
PhotoScanPro




Wear from fault core geometry

» Cross cutting
relationships show
the yellow layer Is
more recent

* The more recent
layer Is smoother

Power (m?)




What happens to a fault surface”

Sagy and Brodsky (2009)
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Strain of asperities for
slip scales inversely with
wavelength

The cross over length | SO ST
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scale corresponds to the Wavelength (m)
thickness of fault rock Kirkpatrick and Brodsky, submitted




Wear products and processes

Largest clasts in the gouge are slivers
ripped off from the wall rocks — single
asperity tailure”

» Fault rock th|ckness Corresponds to Cross




Summary

. Fault surface shear tractions vary
spatially, but slip directions do not

. Fault core thickness shows wear Is faster
at short wavelengths

. A cross over from inelastic to elastic
deformation defines the scale-of strength
asperities on faults

. Fault surface shape imposes scale-
dependent wear during slip




