Fault surface geometry, wear processes and evolution: implications for earthquake mechanics and fault rock rheology

Jamie Kirkpatrick
Kate Shervais
Colorado State University
Emily Brodsky
University of California, Santa Cruz

Fault surface stresses

- Interaction of opposing sides of a fault causes stress heterogeneity:
 - How does the surface shape control shear tractions and displacement?
 - 2. Can we predict wear processes from surface geometry?

Sagy and Brodsky (2009)

Marshall and Morris (2012)

Fault surface characterization

How does the surface shape control shear tractions and displacement?

Fault roughness

• Power spectral density: $p(k) = Ck^{-\beta}$

Slickenline measurements with TLS

Duct tape analysis

- Slickenline rake variation is ± 4° (1σ)
- No

 apparent
 correlation
 with
 surface
 geometry

Kirkpatrick and Brodsky, submitted

Slickenlines from curvature

 Curvature defined by two principal curvatures

$$k_{\mathrm{n}(\lambda)} = \frac{\mathrm{II}}{\mathrm{I}} = \frac{\beta_{xx} + 2\beta_{xy}\lambda + \beta_{yy}\lambda^{2}}{\alpha_{xx} + 2\alpha_{xy}\lambda + \alpha_{yy}\lambda^{2}}$$

Slickenlines from curvature

Kirkpatrick and Brodsky, submitted

Slickenlines from curvature

 Observation: Slickenlines orientations do not vary significantly over fault surfaces

Fault cores

Can we predict wear processes from surface geometry?

Mapping fault core thickness

 Rectified images of the fault in the displacement direction from Agisoft PhotoScanPro

Wear from fault core geometry

- Cross cutting relationships show the yellow layer is more recent
- The more recent layer is smoother

What happens to a fault surface?

Sagy and Brodsky (2009)

- Strain of asperities for slip scales inversely with wavelength
- The cross over length scale corresponds to the thickness of fault rock

Kirkpatrick and Brodsky, submitted

Wear products and processes

- Largest clasts in the gouge are slivers ripped off from the wall rocks – single asperity failure?
- Fault rock thickness corresponds to cross

Summary

- Fault surface shear tractions vary spatially, but slip directions do not
- 2. Fault core thickness shows wear is faster at short wavelengths
- 3. A cross over from inelastic to elastic deformation defines the scale of strength asperities on faults
- 4. Fault surface shape imposes scaledependent wear during slip