
Question 1.

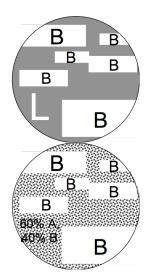
- 1A. Using the phase rule, determine the degrees of freedom:
 - a. at point e F = 2 3 + 1 = 0
 - b. within the field A + B F = 2 2 + 1 = 1
 - c. within the field A + L F = 2 2 + 1 = 1
- 1B. Envision this system as a *slowly* cooling magma chamber. Start with a liquid of bulk composition d at T_0 . In the circles below, show schematically the appearance of the system at temperatures T_0 , T_1 , T_2 , t_1 , t_2 , t_3 , t_4 , t_4 , t_5 , t_5 , t_7 , t_8 , t_7 , t_8 , t_9 , t

B B B

Temperature = T_0

Phase L: Volume % = 100%. Composition=75% b

Phase ______ : Volume % = _____ . Composition= _____


Phase ______: Volume % = ______ . Composition= ______

Temperature = T_1

Phase L: Volume % = 74%. Composition=66% b

Phase **B**: Volume % = 26%. Composition=100% **b**

Phase ______ : Volume % = _____ . Composition= _____

Temperature = $T_2 + 0.01$ °C

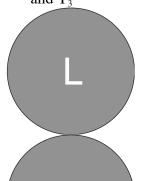
Phase L: Volume % = 42%. Composition=40% b

Phase **B**: Volume % = 58%. Composition=100% **b**

Phase ______: Volume % = ______ . Composition= _____

Temperature = T_3

Phase A: Volume % = 25%. Composition=0% b


Phase **B**: Volume % = 75%. Composition=100% **b**

Phase _____: Volume % = ______ . Composition= _____

1C. For a given pressure, why can't the temperature of the system be lowered beyond T_2 until all of L has crystallized? (hint: use the phase rule)

Because at T_2 , F = C - P + 1 = 2 - 3 + 1 = 0. So everything is known (i.e., specified) and cannot be changed, unless one of the phases disappears and we gain a degree of freedom.

1D. Follow the instructions for 1B. above for a liquid of bulk composition c and temperatures T_1 , T_2 ,+ 1 °C and T_3

60% A,

Temperature = T_1

Phase L: Volume % = 100%. Composition=75% b

Phase ______ : Volume % = ______ . Composition= _____

Phase ______ : Volume % = _____ . Composition= _____

Temperature = $T_2 + 0.01$ °C

Phase L: Volume % = 100%. Composition=75% b

Phase ______: Volume % = ______ . Composition= _____

Phase _____: Volume % = _____ . Composition= _____

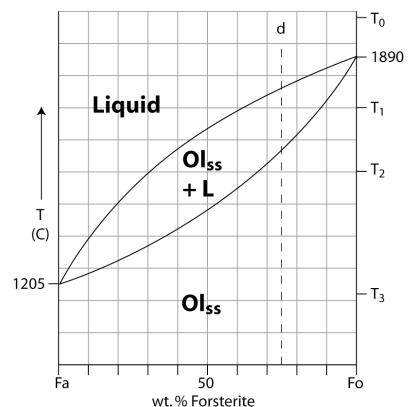
Temperature = T_3

Phase A: Volume % = 60%. Composition=0% b

Phase **B**: Volume % = 40%. Composition=100% **b**

Phase ______: Volume % = ______ . Composition= _____

QUESTION 2


OI

OI

OL

O

OI

2A. Follow the instructions in question 1B for a liquid of bulk composition *d* at T₀, T₁, T₂, and T₃. Assume complete equilibration during cooling (relatively slow cooling). Describe the texture of the final product.

Temperature = T_0

Phase L: Volume % = 100%. Composition= \mathbf{Fo}_{77}

Phase ______: Volume % = ______. Composition= _____

Phase _____: Volume % = _____. Composition= _____.

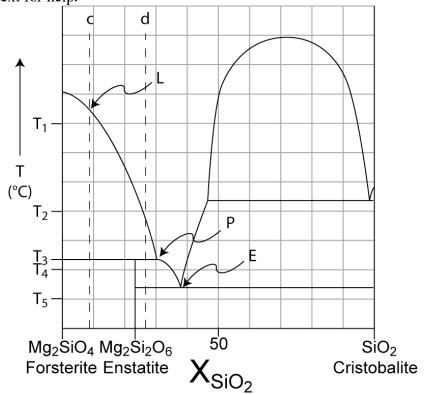
Temperature = T_1

Phase L: Volume % = 50%. Composition= \mathbf{Fo}_{63}

Phase OI: Volume % = 50%. Composition= \mathbf{Fo}_{87}

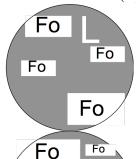
Phase _____: Volume % = _____. Composition= _____

Temperature = T_2


Phase OI: Volume % = 100%. Composition= \mathbf{Fo}_{75}

Phase ______. Composition= ______.

Phase ______. Composition= ______.


QUESTION 3

3A. Label each of the fields in this simplified phase diagram, except for the tiny one at the right. You may wish to use your text for help.

3B. Use the Phase Rule to determine the degrees of freedom at points P, E, and L

3C. Follow the instructions in question 1B for composition c at temperatures T_1 , T_2 , $T_3 + 0.01$ °C, and T_4 . Assume slow (equilibrium) cooling.

Fo

Fo

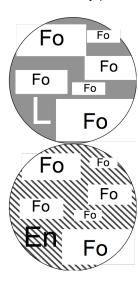
Fo

Fo

Temperature = T_1

Phase L: Volume % = 62%. Composition=13% SiO,

Phase Fo: Volume % = 38%. Composition=0% SiO₂


Phase ______ : Volume % = _____ . Composition= _____

Temperature = T_2

Phase L: Volume % = 31%. Composition=26% SiO₂

Phase Fo: Volume % = 69%. Composition=0% SiO₂

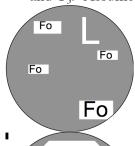
Phase ______ : Volume % = _____ . Composition= _____

Temperature = $T_3 + 1$ °C

Phase L: Volume % = 27%. Composition=30% SiO₂

Phase Fo: Volume % = 73%. Composition=0% SiO₂

Phase ______: Volume % = ______ . Composition= _____

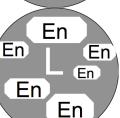

Temperature = T_4

Phase En: Volume % = 35%. Composition=23% SiO₂

Phase Fo: Volume % = 65%. Composition=0% SiO₂

Phase _____: Volume % = ______ . Composition= _____

3D. Follow the instructions in question 1B for composition d at temperatures T_3 ,+ 0.01°C, T_3 - 0.01°C, T_4 and T_5 . Assume slow (equilibrium) cooling.

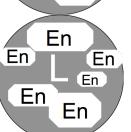


Temperature = $T_3 + 1$ °C

Phase L: Volume % = 90%. Composition=30% SiO₂

Phase Fo: Volume % = 10%. Composition=0% SiO₂

Phase _____: Volume % = ______ . Composition= _____

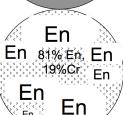


Temperature = T_3 - 1 °C

Phase L: Volume % = 57%. Composition=30% SiO₂

Phase En: Volume % = 43%. Composition=23% SiO₂

Phase ______: Volume % = ______ . Composition= _____



Temperature = T_4

Phase L: Volume % = 67%. Composition=35% SiO₂

Phase En: Volume % = 33%. Composition=23% SiO₂

Phase _____: Volume % = _____ . Composition= _____

Temperature = T_5

Phase Cr: Volume % = 5%. Composition=100% SiO₂

Phase En: Volume % = 95%. Composition=23% SiO₂

Phase ______ . Composition= _____

3E. Given a solid of composition $Mg_2Si_2O_6$, at what temperature will the solid first melt? What will be the product(s) of melting? What are their compositions? En will first melt at the peritectic temperature (T₃) to produce Forsterite crystals and a liquid of the peritectic composition (30%SiO₂).