## **AFM Quiz**

C:\Courses\320\fall2005\inclass, etc\60-AFMinClass,wpd

(This exercise is a condensed version of one written by Jane Selverstone, available at: http://serc.carleton.edu/NAGTWorkshops/petrology/teaching\_examples/2240.html)

Consider the AFM diagrams attached to this handout. They are in order. Diagram A is for very low-grade rocks. Diagram U is for very high-grade rocks (above the 2<sup>nd</sup> sillimanite isograd).

Considering only the AFM diagrams provided, in what parts of PT space will the following minerals and assemblages be stable (assuming also that quartz and muscovite or K-feldspar are present):

- 1. chloritoid
- 2. staurolite
- 3. sillimanite + K-feldspar
- 4. chlorite + choritoid
- 5. biotite + staurolite + kyanite
- 6. staurolite + chlorite + garnet
- 7. staurolite + garnet + biotite + kyanite

All you need to do is figure out which metamorphic zone(s), designated by letter(s) goes with each.

## Mineral abbreviations:

alm = almandine

als = and, ky, sil

and = and

bt = biotite

chl = chlorite

crd = cordierite

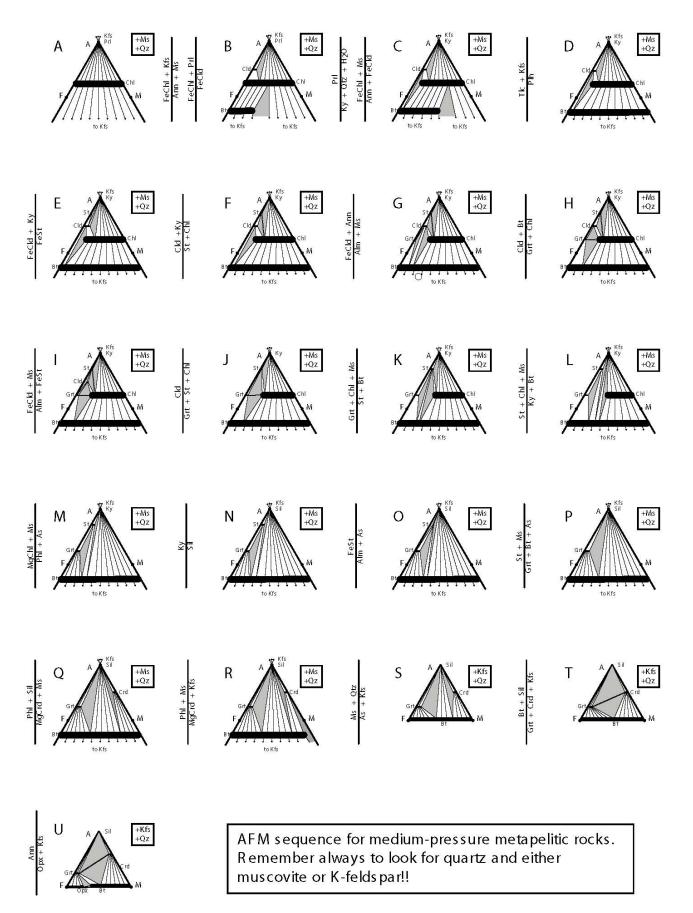
ctd = chloritoid

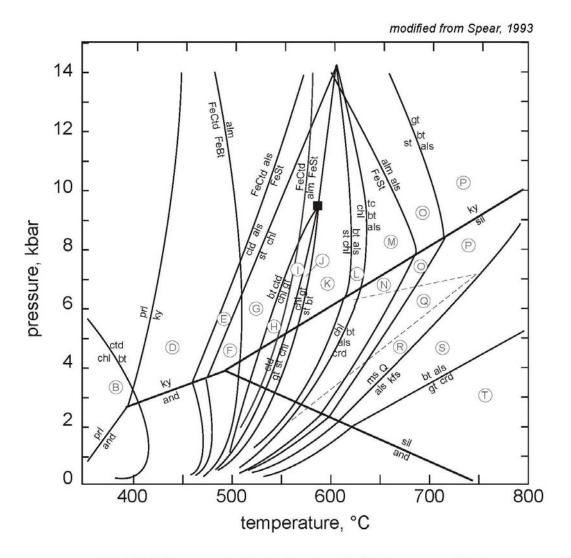
gt = garnet

kfs = K-feldspar

ky = kyanite

ms = muscovite


prl = pyrophyllite


Q = quartz

sil = sillimanite

st = staurolite

tc = talc





Labeled fields represent **divariant** regions; the labels correspond to the specific AFM topologies shown on the attached page.

| alm = almandine        | kfs = K-feldspar   |
|------------------------|--------------------|
| als = and, kya, or sil | ky = kyanite       |
| and = andalusite       | ms = muscovite     |
| bt = biotite           | prl = pyrophyllite |
| chl = chlorite         | Q = quartz         |
| crd = cordierite       | sil = sillimanite  |
| ctd = chloritoid       | st = staurolite    |
| gt = garnet            | tc = talc          |