AFM Quiz C:\Courses\320\fall2005\inclass, etc\60-AFMinClass,wpd (This exercise is a condensed version of one written by Jane Selverstone, available at: http://serc.carleton.edu/NAGTWorkshops/petrology/teaching_examples/2240.html) Consider the AFM diagrams attached to this handout. They are in order. Diagram A is for very low-grade rocks. Diagram U is for very high-grade rocks (above the 2nd sillimanite isograd). Considering only the AFM diagrams provided, in what parts of PT space will the following minerals and assemblages be stable (assuming also that quartz and muscovite or K-feldspar are present): - 1. chloritoid - 2. staurolite - 3. sillimanite + K-feldspar - 4. chlorite + choritoid - 5. biotite + staurolite + kyanite - 6. staurolite + chlorite + garnet - 7. staurolite + garnet + biotite + kyanite All you need to do is figure out which metamorphic zone(s), designated by letter(s) goes with each. ## Mineral abbreviations: alm = almandine als = and, ky, sil and = and bt = biotite chl = chlorite crd = cordierite ctd = chloritoid gt = garnet kfs = K-feldspar ky = kyanite ms = muscovite prl = pyrophyllite Q = quartz sil = sillimanite st = staurolite tc = talc Labeled fields represent **divariant** regions; the labels correspond to the specific AFM topologies shown on the attached page. | alm = almandine | kfs = K-feldspar | |------------------------|--------------------| | als = and, kya, or sil | ky = kyanite | | and = andalusite | ms = muscovite | | bt = biotite | prl = pyrophyllite | | chl = chlorite | Q = quartz | | crd = cordierite | sil = sillimanite | | ctd = chloritoid | st = staurolite | | gt = garnet | tc = talc |