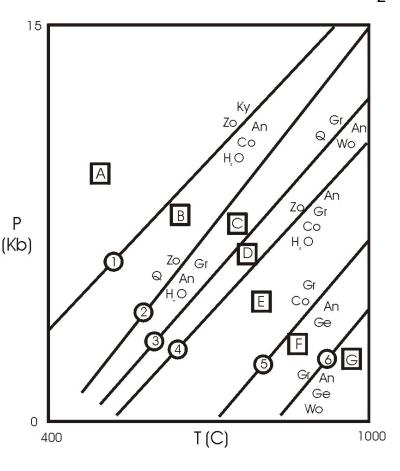

Introduction to Phase Equilibria

On the triangular diagram below, plot each of the following mineral compositions. Show locations with dots:

grossular Ca₃Al₂Si₃O₁₂ quartz SiO₂ anorthite CaAl₂Si₂O₈ wollastonite CaSiO₃ kyanite Al₂SiO₅ larnite Ca₂SiO₄ corundum Al₂O₃ lime CaO gehlenite Ca₂Al₂SiO₇



This figure shows a phase diagram involving minerals in the CASH (CaO-Al₂O₃-SiO₂-H₂O) system. It includes some of the same phasess you considered above, plus a couple of new ones.

There are six reactions (numbered 1 through 6) which divide PT space into seven fields (A through G).

Note, this is a 4 component system. Fill in the following table:

degrees of freedom	# of phases that may coexist
0	6
1	5
2	4

For each of the following 15 assemblages, tell in what zones or on what reactions it is stable. Some may be stable nowhere, some everywhere.

Co everywhere
Zo left of 4
Ge everywhere
Zo-An left of 4
An-Ge FG
Zo-An-Ge nowhere
Gr-An-H₂O CDEF
An-Wo-Q right of 3
Gr-Co-An-Ge 5

Gr-An-Co-H₂O E An-Ge-Wo-Zo nowhere Zo-Ky-Co-Gr-H₂O nowhere Gr-An-Zo-Q-H₂O 2 An-Co-Gr-Ge-H₂O nowhere An-Co-Gr-Q-H₂O nowhere

What general observation can you make about the stability field (range of PT space where something is stable) and the number of minerals in an assemblage? The more minerals that are together in an assemblage, the smaller the stability field.