X-Rays

Problem Set 7

1. Mo k-series radiation has an absorption edge corresponding to a wavelength of 0.61977 Å. The $k\alpha_1$ line has a wavelength of 0.70926 Å and the $k\beta_1$, a wavelength of 0.63225 Å.

A. What is the minimum potential in KV that can be used to produce Mo k-series radiation from a Mo-target X-ray tube?

Convert the energy of the absorption edge to eV.

 $E = hc/\lambda$

 $E = 6.6*10^{-34}*3.0*10^{8}/0.61977*10^{-10}$

E = $3.1047*10^{-15}$ joules E = $3.1047*10^{-15} / 1.602*10^{-19}$

E = 19.947 eV

Voltage = 19.947 KV

B. What is the frequency of Mo $k\beta$ radiation?

 $v = c/\lambda$ $v = 3*10^8/0.63225*10^{-10}$ $v = 4.745*10^{18} \text{ hz}$

C. Nb has an absorption edge corresponding to a wavelength of 0.65291Å. Can Nb be used as a β -filter for Mo radiation? Why?

Kβ (Mo)= 0.63225Å Is this energetic enough to remove inner K-shell electrons from Nb?

 $K\alpha(Mo) = 0.70926$ Å Is this energetic enough to remove inner K-shell electrons from Nb?

Then the K β of Mo will be absorbed strongly but the K α will not. So it can be used as a β-filter.

X-Rays

Problem Set 7

2. Barite (BaSO₄) has orthorhombic cell edges a = 7.157 Å, b = 8.884 Å, and c = 5.457 Å. Calculate 2θ for Cuk α radiation $\lambda = 1.5405\text{\AA}$) for the following X-ray diffractions:

a.
$$(002)$$

d = $1/[h^2/a^2 + k^2/b^2 + l^2/c^2]^{1/2}$
d = $c/2$

d = 2.728Å

b. (110)

d =
$$1/[h^2/a^2 + k^2/b^2 + l^2/c^2]^{1/2}$$

d = $1/[(1/7.157)^2 + (1/8.884)^2]^{1/2}$

d = 5.574Å

c. (021)

$$d = 1/[h^2/a^2 + k^2/b^2 + l^2/c^2]^{1/2}$$

$$d = 1/[(2/8.884)^2 + (1/5.457)^2]^{1/2}$$

d = 3.445 Å

d. (111) $d = 1/[h^2/a^2 + k^2/b^2 + l^2/c^2]^{1/2}$ $d = 1/[(1/7.157)^2 + (1/8.884)^2 + (1/5.457)^2]^{1/2}$ d = 3.899Å

e. (301)

 $d = 1/[h^2/a^2 + k^2/b^2 + l^2/c^2]^{1/2}$ $d = 1/[(3/7.157)^2 + (1/5.457)^2]^{1/2}$ d = 2.262 Å

 $\lambda = 2d * \sin \theta$

 $2\theta = 2*\sin^{-1}(\lambda/2d)$

 $2\theta = 2^* \sin^{-1}(1.5405/5.457)$

 $2\theta = 32.79^{\circ}$

$$\lambda = 2d * \sin \theta$$

 $2\theta = 2*\sin^{-1}(\lambda/2d)$

 $2\theta = 2^* \sin^{-1}(1.5405/2^*5.574)$

 $2\theta = 15.88^{\circ}$

 $\lambda = 2d * \sin \theta$

 $2\theta = 2*\sin^{-1}(\lambda/2d)$

 $2\theta = 2^* \sin^{-1}(1.5405/2^*3.445)$

 $2\theta = 25.84^{\circ}$

 $\lambda = 2d * \sin \theta$

 $2\theta = 2*\sin^{-1}(\lambda/2d)$

 $2\theta = 2^* \sin^{-1}(1.5405/2^*3.899)$

 $2\theta = 22.79^{\circ}$

 $\lambda = 2d * \sin \theta$

 $2\theta = 2*\sin^{-1}(\lambda/2d)$

 $2\theta = 2^* \sin^{-1}(1.5405/2^*2.262)$

 $2\theta = 39.82^{\circ}$