Very detailed Class Plan, extensive assessment. Some survey fatigue..... GEOMORPHOLOGY (GEOL 151) -- Class Plan with Learning Goals, Fall 2005 | DUE Monday | Date | Monday Class | DUE Wednesday
(+LAB FROM PREVIOUS WEEK) | Date | Wednesday Class | Specific skills and knowledge gains | Broader learning goals | |---|----------------|---|--|----------------|--|---|---| | | | CL = use computer lab | | | | | | | nothing | 29-Aug
(CL) | Introductory class; we will fill
out consent forms as well as
complete knowledge and attitude
surveys after a brief introduction
to the class structure and
content. | Review http://geology.asu.edu/~sreynolds/to po_gallery/intro_title.htm Review http://www.maptools.com/UsingUTM/index.html Review http://www.maptools.com/FreeTools http://trimble.com/gps/ Review http://maps.google.com/ | 31-Aug
(CL) | Geolocating techniques lab - We will use maps, GPS, and walking tour through the gully behind Delehanty Hall and on to the Winooski River as an introduction to the local river landscape and to GPS mapping skills. We will pass landsildes, core trees, see a retention pond, use old megasiide images to see change over time and walk back up to campus via the river overlook. We will consider how this landscape has changed over time from 14,000 years ago until today. | By the end of this week, you should be able to
use GPS to map locations in field, plot GPS-
derived locations on a topographic map, read a
topographic map, measure distance on map,
measure distance with GPS, be familiar with
operation of a Garmin 12, be able to plot, read,
and use UTM coordinates to calculate a distance
between two points. | By the end of this week, you should
understand how GPS technology works,
understand map plotting and coordinate
systems, see a local example of the
slope/stream/river continuum, become awar
that landscapes change over time, be able to
explain several ways that people influence
landscapes and landscapes influence people,
and recognize how images can be used as a
data source for understanding landscape
process, pattern and history. | | nothing | 5-Sep | ∍ No Class - Labor Day | Do Learning Landscapes, module 1,
Why rivers? Read Demands and Disposal, p. 167-
174, from Water, Rivers, and Creeks,
Leopold Read A River, from Encounters with
the Archdruid, McPhee | 7-Sep | Putting rivers in a human context - We will see both a hydroelectric plant and sewage treatment plant. We will take a tour of these facilities in order to learn how they work and how they effect the river. | By the end of this week, you should begin to be able to parse photographic images and understand their landscape content, begin to be familiar with the <i>Learning Landscapes</i> web site, understand how both hydroelectric and sewage treatment plants work, and understand the specific and more general effects of these types of plants on rivers beyond the borders of Vermont. | By the end of this week, you should
understand the spectrum of uses of rivers,
begin to understand concepts of energy and
mass transfer into and out of rivers as well as
human impact on river systems. | | Do Learning
Landscapes,
module 2,
Shapes | 12-Sep | River morphology and process
class; we will review the most
important elements of river
taxonomy, consider the graded
profile and examine the germane
processes that control the shape
of river channels. We will
consider the impact of floods and
tectonic setting on river channels. | Read Streams and Drainage Systems
in The Dynamic Earth, Skinner and
Porter, p. 217-239. | 14-Sep | Winooski River float trip - We will be floating the Winooski River in canoes in order to practice identifying fluvial forms and processes. We will be mapping the location of these forms and our route using GPS. | By the end of this week, you should be able to
recognize important fluvial landforms in
photographs and in the field and use GPS to
plot their locations on a map. You should be
able to recognize evidence for past changes in
river discharge and stage as well as current and
past uses of rivers. You should be able to
identify human modification to a river and river
corridor as well as the impacts of one river on
human constructs. | By the end of this week, you should be able to understand spatial relationships between different fluvial landforms in the field, tell simple landscape history stories based on observing field evidence, have a better local sense of place, and a sense of how the Winoposki River functions as a link between land and lake. You should understand that rivers are dynamic and change over time leaving evidence of past behavior. | | Do Learning
Landscapes,
module 3,
Conveyors | 19-Sep
(CL) | Fluxes of water, sediment,
and elements; we will prepare
for lab by introducing the
instrumentation we will be using
as well as the type of calculations
we will be making. We will set
our measurements in context by
examining flux data from other
watersheds. | Read A Manual of Field Hydrology,
Sanders, p. 49-74 | 21-Sep | River monitoring lab - We will visit the
Huntington River in order to learn how to
characterize the channel and measure the
discharge of water, sediment and dissolved
constituents. | By the end of the week, you should know how to use an auto level and tape to measure a channel cross-section as well as a flow meter to measure velocity. Using both field and lab data, you should be able to make a discharge calculation for water, suspended sediment, and dissolved load as well as be facile with Manning's equation including the ability to calculate a roughness value. You should be able to identify bankful stage in the field and find | By the end of the week, you should
understand the concepts of flux (for water,
sediment, and dissolved load), dimensional
analysis, velocity and discharge. You should
begin to feel more comfortable with the idea
of using simple mathematical models to
represent complex natural systems. You
should be able to recognize and explain
spatial variability of water flow patterns in the
field. | evidence of the height to which water rose in ### 115 Questions; given pre and post; posted on class web site; keyed by week and Bloom level | Week | Bloom
level | Question | none | I could
answer
this
question
well and in
its
entirety.
(3 pts) | I could answer this question partially or with help. (2 pts) | I could not answer this question today. | average | |------|----------------|--|------|---|--|---|---------| | 1 | 2 | Explain the history of the landscape between Delehanty Hall and the Winooski River | 1 | 0 | 25 | 3 | 1.89 | | 1 | 3 | Read UTM coordinates of a point on a map | 0 | 11 | | | 2.00 | | 1 | 3 | Program a GPS to find a specific point on a map using UTM coordinates | 0 | 6 | 16 | 7 | 1.97 | | 1 | 2 | Explain how GPS works | 0 | 7 | 17 | 5 | 2.07 | | 1 | 3 | Use a GPS to map locations in the field | 0 | 10 | 12 | 7 | 2.10 | | 1 | 3 | Plot a GPS-derived location on a map using UTM coordinates | 1 | 9 | 11 | 8 | 2.04 | | 1 | 3 | Measure a distance on a map | 1 | 22 | 6 | 0 | 2.79 | | 1 | 3 | Measure a distance using GPS | 0 | 6 | 16 | 7 | 1.97 | | 1 | 2 | Explain the UTM coordinate system | 0 | 1 | 11 | 17 | 1.45 | | 1 | 2 | Explain the symbols on a topographic map | 0 | 16 | 13 | | 2.55 | # Gain on all questions; largest gain in core of course. Learning or confidence? ### Least Gains (4 to 15%; all week 1 except...) Measure a distance on a map Explain the symbols on a topographic map Read elevation from a topographic map Give an example of how people influence landscapes Give an example of how landscapes influence people Recognize major volcanic and tectonic landforms (last week) ### **Greatest Gains (130 to 150%; middle weeks)** Knowing you are standing on a cut bank, predict where the point bar would be found Use an autolevel to survey a stream channel Use Manning's equation to calculate a roughness coefficient What can you do with a Munsell chart Understand the physical meaning of each variable and constant in the mathematical force balance equations describing slope stability Explain how an autolevel works