
Building aquifers to explore Darcy's Law

Aqueous Systems (ESC 210) - Spring 2012

Jacquie Smith, Associate Professor of Geology
The College of Saint Rose, Albany, NY

Darcy's Law: $Q = -KA(\Delta h/L)$

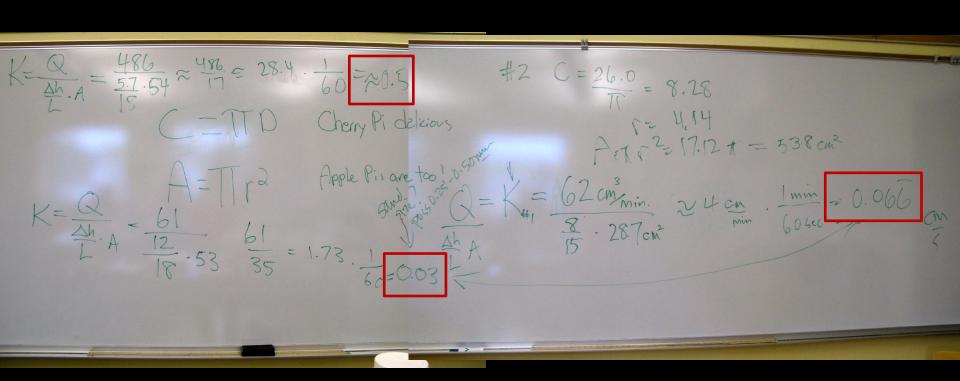
Three grain sizes (sand): 1-2 mm, 0.5-1.0 mm, and 0.25-0.50 mm

Saturating the aquifer

Teamwork required

We measured discharge for 60 seconds and marked h in both piezometers

http://www.youtube.com/watch?v=6uBxKZusOYg&feature=plcp


We needed longer piezometers with filters on their bottom ends

http://www.youtube.com/watch?v=s7YyBHJE4SU

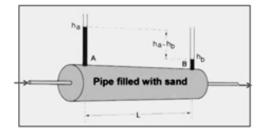
Calculating K, the hydraulic conductivity

Rough calculations done on the board – reasonable K values!

Calculating K, the hydraulic conductivity

Final calculations done in Excel

	Α	В	С	D	Е	F	G	Н	I	J	K	L	_	
1	Lab 13 - Data		Darcy's Law: Q = KiA or Q = - K A (\Delta h/L)											
2												_		
	Apparatus	Packing												
3	#	material size	Q (ml/min)	Q (cm ³ /s)	A (cm ²)	h1	h2	Δh (cm)	L (cm)	Δh/L	K (cm/s)			
			, ,	- (, ,			, ,	, ,		` '			
4	1	0.25-0.50 mm	62	1.03	28.7	27.7	19.7	8	15	0.53	0.07			
5	2	1.0-2.0 mm	486	8.10	53.8	27.5	21.8	5.7	18	0.32	0.5			
3		1.0-2.0 11111	400	0.10	55.6	21.5	21.0	5.7	10	0.32	0.5			
6	3	0.50-1.0 mm	61	1.02	52.9	36	24	12	18	0.67	0.03			
												J		
													-	
14 4		14												
Ready Artesian sand geysers - YouTube - Mozilla Firefox								fox	Ⅲ □ Ⅲ 120% ─ ↓					


Calculating K, the hydraulic conductivity

Lab 13 – Darcy tube ESC 210 - Spring 2012 Name

Making a Darcy apparatus

Introduction

We are going to build one or more working models of an apparatus with which to explore Darcy's Law $(Q = KiA = -KA(\Delta h/L))$. We want to end up with something like this:

Once we have constructed the apparatus and determined A and L, we will run water through it and measure head difference and discharge, then calculate hydraulic conductivity for the packing material

Methods - Describe what we did.

Results - Report what happened.

Discussion - What worked, what didn't work, what we learned, how we could improve this.

Lab handout

1

2

Conclusions

- Design and engineering process required extensive problem-solving and collaboration (good!)
- Components of Darcy's Law went from abstract to concrete for students (good!)
- Calculated K values were reasonable exciting bonus!
- Will definitely do this again

Cutting Edge Workshop
Teaching Environmental Geology
Montana State University
Bozeman, MT
June 2-7, 2012